Vol. 27
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2010-11-30
Direction of Arrival Estimation of Humans with a Small Sensor Array Using an Artificial Neural Network
By
Progress In Electromagnetics Research B, Vol. 27, 127-149, 2011
Abstract
An array processing algorithm based on artificial neural networks (ANNs) is proposed to estimate the directions of arrival (DOAs) of moving humans using a small sensor array. In the approach, software beamforming is first performed on the received signals from the sensor elements to form a number of overlapping beams. The received signals from all the beams produce a unique "signature" in accordance with the target locations as well as the number of targets. The target tracking procedure is handled by two separate ANNs in sequence. The first ANN determines the number of targets, and the second ANN estimates their respective DOAs. The ANNs are trained using simulation data generated based on a point scatterer model in free space. The proposed approach is tested using measurement data from two loudspeakers and two walking humans in line-of-sight and through-wall environments.
Citation
Youngwook Kim, and Hao Ling, "Direction of Arrival Estimation of Humans with a Small Sensor Array Using an Artificial Neural Network," Progress In Electromagnetics Research B, Vol. 27, 127-149, 2011.
doi:10.2528/PIERB10100510
References

1. Frazier, L. M., "Motion detector radar for law enforcement," IEEE Potentials, Vol. 16, 23-26, Jan. 1998.

2. Nag, S., M. A. Barnes, T. Payment, and G. Holladay, "Ultrawideband through-wall radar for detecting the motion of people in real time," SPIE Proc. Radar Sensor Technology and Data Visualization, Vol. 4744, 48-57, Jul. 2002.

3. Geisheimer, J. L., E. F. Greneker, and W. S. Marshall, "High-resolution Doppler model of the human gait," SPIE Proc. Radar Sensor Technology and Data Visualization, Vol. 4744, 8-18, Jul. 2002.

4. Lai, C. P. and R. M. Narayanan, "Through-wall imaging and characterization of human activity using ultrawideband (UWB) random noise radar," Proc. of SPIE, Sensors and C3I Technologies for Homeland Security and Homeland Defense, Vol. 5778, 186-195, May 2005.

5. Tatoian, J. Z., G. Franceshetti, H. Lackner, and G. G. Gibbs, "Through-the-wall impulse SAR experiments," IEEE Antennas Propagat. Soc. Int. Symp., Jul. 2005.

6. Ahmad, F., Y. Zhang, and M. G. Amin, "Three-dimensional wideband beamforming for imaging through a single wall," IEEE Trans. Geosci. Remote Sensing Lett., Vol. 5, 176-179, Apr. 2008.

7. Lin, A. and H. Ling, "A Doppler and direction-of-arrival (DDOA) radar for multiple-mover sensing based on a two-element array," IEEE Trans. Aerosp. Electron. Syst., Vol. 43, 1496-1509, Oct. 2007.

8. Ram, S. S. and H. Ling, "Through-wall tracking of human movers using joint Doppler and array processing," IEEE Trans. Geosci. Remote Sensing Lett., Vol. 5, 537-541, Jul. 2008.

9. Johnson, D. and D. Dudgeon, Array Signal Processing, Prentice Hall, 1993.

10. Trees, H. V., Optimum Array Processing, Wiley, 2002.

11. Liao, B., G. S. Liao, and J. Wen, "A method for DOA estimation in the presence of unknown nonuniform noise," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 14-15, 2113-2123, 2008.

12. Zhang, X., X. Gao, and W. Chen, "Improved blind 2D direction of arrival estimation with L-shaped array using shift invariance property," Journal of Electromagnetic Waves and Applications, Vol. 23, 593-606, 2009.

13. Tsao, J. and B. D. Steinberg, "Reduction of sidelobe and speckle artifacts in microwave engineering: The CLEAN technique," IEEE Trans. Antennas Propagation, Vol. 36, 543-556, Apr. 1988.

14. Li, J. and P. Stoica, "Efficient mixed-spectrum estimation with applications to target feature extraction," IEEE Trans. Signal Processing, Vol. 44, 281-295, Feb. 1996.

15. Schmidt, R. O. "Multiple emitter location and signal parameter estimation," IEEE Trans. Antennas Propagation, Vol. 34, 276-280, Mar. 1986.

16. Roy, R., A. Paulraj, and T. Kailath, "ESPRIT --- A subspace rotation approach to estimation of parameters of cisoids in noise," IEEE Trans. Acoust., Speech, Signal Proc., Vol. 34, 1340-1342, Oct. 1986.

17. Lo, T., H. Leung, and J. Litva, "Radial basis function neural network for direction-of-arrivals estimation," IEEE Signal Processing Lett., Vol. 1, 45-47, Feb. 1994.

18. El Zooghby, A. H., C. G. Christodoulou, and M. Georgiopoulos, "A neural network-based smart antenna for multiple source tracking," IEEE Trans. Antennas Propagation, Vol. 48, 768-776, May 2000.

19. Vigneshwaran, S., N. Sundararajan, and P. Saratchandran, "Direction of arrival estimation under array sensor failures using a minimal resource allocation neural network," IEEE Trans. Antennas Propagation, Vol. 55, 334-343, 2007.

20. Sherman, S. M., Monopulse Principles and Techniques, Artech House, 1984.

21. Robinson, J. and Y. Rahmat-Samii, "Particle swarm optimization in electromagnetics," IEEE Trans. Antennas Propagation, Vol. 52, 397-407, Feb. 2004.

22. Bishop, C., Neural Networks for Pattern Recognition, Oxford University Press, 1995.

23. Kim, Y., "Through-wall human monitoring using data-driven models with Doppler information,", Ph.D. Dissertation, The University of Texas at Austin, May 2008.

24. Kim, Y. and H. Ling, "Human activity classification based on microDoppler signatures using a support vector machine," IEEE Trans. Geosci. Remote Sensing, Vol. 47, 1328-1337, May 2009.

25. Bermani, E., A. Boni, A. Kerhet, and A. Massa, "Kernels evaluation of SVM-based estimators for inverse scattering problems," Progress In Electromagnetics Research, Vol. 53, 167-188, 2005.