Vol. 27
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2010-11-30
Three-Dimensional Axisymmetric Invisibility Cloaks with Arbitrary Shapes in Layered-Medium Background
By
Progress In Electromagnetics Research B, Vol. 27, 151-163, 2011
Abstract
Three-dimensional (3D) axisymmetric invisibility cloaks with arbitrary shaped in layered-media background are presented using the transformation optics. The inner and outer boundaries of the cloaks can be non-conformal with arbitrary shapes, which considerably improve the flexibility of the cloaking applications. However, such kinds of 3D cloaks cannot be simulated using the commercial softwares due to the tremendous memory requirements and CPU time. By taking advantage of the rotationally symmetrical property, we propose an efficient finite-element method (FEM) to simulate and analyze the 3D cloaks, which can greatly reduce the CPU time and memory requirements. The method is based on the electric-field formulation, in which the transverse fields are expanded in terms of second-order edge-based vector basis functions and the azimuth components are expanded using second-order nodal-based scalar basis functions. The FEM mesh is truncated using the absorbing boundary condition. Excellent cloaking performance of the 3D cloaks in layered-media background has been verified by the proposed method.
Citation
Yong-Bo Zhai, and Tie-Jun Cui, "Three-Dimensional Axisymmetric Invisibility Cloaks with Arbitrary Shapes in Layered-Medium Background," Progress In Electromagnetics Research B, Vol. 27, 151-163, 2011.
doi:10.2528/PIERB10081501
References

1. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, No. 5781, 1780-1782, 2006.
doi:10.1126/science.1125907

2. Schurig, D., J. B. Pendry, and D. R. Smith, "Calculation of material properties and ray tracing in transformation media," Opt. Express, Vol. 14, 9794-9804, 2006.
doi:10.1364/OE.14.009794

3. Cummer, S. A., B. I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, "Full-wave simulations of electromagnetic cloaking structures," Phys. Rev. E,, Vol. 74, 2006.

4. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, 2006.
doi:10.1126/science.1133628

5. Chen, H., B. I. Wu, B. Zhang, and J. A. Kong, "Electromagnetic wave interactions with a metamaterial cloak," Phys. Rev. Lett., Vol. 99, 2007.

6. Andrey, N., W. Q. Cheng, and S. Zouhdi, "Transformation-based spherical cloaks designed by an implicit transformation-independent method: Theory and optimization," New J. Phys., Vol. 11, 2009.

7. Luo, Yu., H. S. Chen, J. J. Zhang, L. Ran, and J. A. Kong, "Design and analytically full-wave validation of the invisibility cloaks, concentrators, and field rotators created with a general class of transformations," Phys. Rev. B., Vol. 77, 2008.

8. Rahm, M., D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, "Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell's equations," Photo. Nanos. Fund. Appl., Vol. 6, 87-95, 2008.
doi:10.1016/j.photonics.2007.07.013

9. Chen, H. and C. T. Chan, "Transformation media that rotate electromagnetic fields," Appl. Phys. Lett., Vol. 90, 2007.

10. Tsang, M. and D. Psaltis, "Magnifying perfect lens and superlens design by coordinate transformation," Phys. Rev. B, Vol. 77, 2008.

11. Kildishev, A. V. and E. E. Narimanov, "Impedance-matched hyperlens," Opt. Lett., Vol. 32, 3432-3434, 2007.
doi:10.1364/OL.32.003432

12. Zhang, J. J., F. Huang, T. Jiang, Y. Luo, H. S. Chen, J. A. Kong, and B. I. Wu, "Cloak for multilayered and gradually changing media," Phys. Rev. B, Vol. 77, 2008.

13. Li, C., K. Yao, and F. Li, "Invisibility cloaks with arbitrary geometries for layered and gradually changing backgrounds," J. Phys. D: Appl. Phys., Vol. 42, 2009.

14. You, Y., G. W. Kattawar, P. W. Zhai, and P. Yang, "Zero-backscatter cloak for aspherical particles using a generalized DDA formalism," Opt. Express, Vol. 16, 2068-2079, 2008.
doi:10.1364/OE.16.002068

15. You, Y., G. W. Kattawar, P. W. Zhai, and P. Yang, "Invisibility cloaks for irregular particles using coordinate transformations," Opt. Express, Vol. 16, 6134-6145, 2008.
doi:10.1364/OE.16.006134

16. Ping, X. W., T. J. Cui, and W. B. Lu, "The combination of Bcgstab with multifrontal algorithm to solve Febi-MLFMA linear systems arising from inhomogeneous electromagnetic scattering problems," Progress In Electromagnetics Research, Vol. 93, 91-105, 2009.
doi:10.2528/PIER09050604

17. Sun, X. Y. and Z. P. Nie, "Vector finite element analysis of multicomponent induction response in anisotropic formations," Progress In Electromagnetics Research, Vol. 81, 21-39, 2008.
doi:10.2528/PIER07121502

18. Greenwood, A. D. and J. M. Jin, "A novel efficient algorithm for scattering from a complex BOR using mixed finite elements and cylindrical PML," IEEE Trans. Antennas Propgat., Vol. 47, 1260-1266, 1999.
doi:10.1109/8.791941

19. Ding, D. Z. and R. S. Chen, "Electromagnetic scattering by conducting bodies of revolution (BOR) coated with homogeneous chiral media above a lossy half-space," Progress In Electromagnetics Research, Vol. 104, 385-401, 2010.
doi:10.2528/PIER10021004

20. Zhai, Y. B., X. W. Ping, W. X. Jiang, and T. J. Cui, "Finite-element analysis of three-dimensional axisymmetrical invisibility cloaks and other metamaterial devices," Commun. Comput. Phys., Vol. 8, 823-834, 2010.

21. Jin, J. M., The Finite Element Method in Electromagnetics, Wiley, New York, 1993.

22. Chew, W. C., Waves and Fields in Inhomogeneous Media, Van Nostrand Reinhold, New York, 1990.

23. Webb, J. P. and S. McFee, "The use of hierarchical triangles in finite-element analysis of microwave and optical devical," IEEE Transactions on Magnetics, Vol. 27, 4040-4043, 1991.
doi:10.1109/20.104988

24. Andersen, L. S. and J. L. Volakis, "Development and application of a novel class of hierarchical tangential vector finite elements for electromagnetics," IEEE Trans. Antennas Propagat., Vol. 47, 112-120, 1999.
doi:10.1109/8.753001

25. Chen, R. S., D. X. Wang, E. K. N. Yung, and J. M. Jin, "Application of the multifrontal method to the vector FEM for analysis of microwave filters," Microw. Opt. Tech. Lett., Vol. 31, 465-470, 2001.
doi:10.1002/mop.10064