Vol. 25

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2010-09-10

Novel, Dual Band, Single and Double Negative Metamaterials: Nonconcentric Delta Loop Resonators

By Cumali Sabah
Progress In Electromagnetics Research B, Vol. 25, 225-239, 2010
doi:10.2528/PIERB10080302

Abstract

Novel, dual band, single and double negative metamaterials composed of nonconcentric and different sized delta loop resonators are presented. The proposed structures provide two distinct resonant frequencies in the microwave region. Effective medium parameters of these metamaterial structures are extracted using retrieval method to demonstrate the presence of the mentioned frequencies. In addition, equivalent circuit model for the individual magnetic resonator and wire strip is presented to give a clear explanation for the resonance behavior of the structures and to validate the proposed designs. The results show that the proposed metamaterials can be used as an alternative to the known counterparts especially when a dual band operation is needed at the frequency region of interest.

Citation


Cumali Sabah, "Novel, Dual Band, Single and Double Negative Metamaterials: Nonconcentric Delta Loop Resonators," Progress In Electromagnetics Research B, Vol. 25, 225-239, 2010.
doi:10.2528/PIERB10080302
http://jpier.org/PIERB/pier.php?paper=10080302

References


    1. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Physical Review Letters, Vol. 84, 4184-4187, 2000.
    doi:10.1103/PhysRevLett.84.4184

    2. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics Uspekhi, Vol. 10, 509-514, 1968.
    doi:10.1070/PU1968v010n04ABEH003699

    3. Brown, J. and IEE Proceedings, "The design of metallic delay dielectrics,", Vol. 97, 45-48, 1950.

    4. Rotman, W., "Plasma simulation by artificial dielectrics and parallel-plate media," IRE Transactions on Antennas and Propagation, Vol. 10, 82-95, 1962.
    doi:10.1109/TAP.1962.1137809

    5. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Physical Review Letters, Vol. 76, 4773-4776, 1996.
    doi:10.1103/PhysRevLett.76.4773

    6. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, 2075-2084, 1999.
    doi:10.1109/22.798002

    7. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2001.
    doi:10.1126/science.1058847

    8. www.wave-scattering.com.

    9. Engheta, N., "Metamaterials with negative permittivity and permeability: Background, salient features, and new trends," 2003 IEEE MTT-S International Microwave Symposium Digest, Vol. 1, 187-190, 2003.
    doi:10.1109/MWSYM.2003.1210912

    10. Sabah, C. Analysis, applications, and a novel design of double negative metamaterials, Ph.D. Thesis, University of Gaziantep, Gaziantep, Turkey, 2008.

    11. Sabah, C. and S. Uckun, "Triangular split ring resonator and wire strip to form new metamaterial," Proceedings of 29th General Assembly of the International Union of Radio Science, Chicago, Illinois, USA, August 2008.

    12. Sabah, C., A. O. Cakmak, E. Ozbay, and S. Uckun, "Transmission measurement of a new metamaterial sample with negative refraction index," 8th International Conference on Electrical, Transport and Optical Properties of Inhomogeneous Media (ETOPIM8), June 2009.

    13. Sabah, C., A. O. Cakmak, E. Ozbay, and S. Uckun, "Transmission measurement of a new metamaterial sample with negative refraction index," Physica B: Condensed Matter, Vol. 405, 2955-2958, 2010.
    doi:10.1016/j.physb.2010.01.012

    14. Sabah, C., "Tunable metamaterial design composed of triangular split ring resonator and wire strip for s- and c-microwave bands," Progress In Electromagnetics Research B, Vol. 22, 341-357, 2010.
    doi:10.2528/PIERB10051705

    15. Ziolkowski, R. W., "Design, fabrication, and testing of double negative metamaterials," IEEE Transaction on Antennas and Propagation, Vol. 51, 1516-1529, 2003.
    doi:10.1109/TAP.2003.813622

    16. Chen, X., T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Physical Review E, Vol. 70, 016608.1-016608.7, 2004.

    17. Smith, D. R., D. C. Vier, T. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Physical Review E, Vol. 71, 036617.1-036617.11, 2005.

    18. Grover, F. W., Inductance Calculations, Dover Publication, Inc., New York, 1946.

    19. Terman, F. E., Radio Engineers' Handbook, McGraw Hill, London, 1950.

    20. Clayton, R. P., Inductance: Loop and Partial, Wiley-IEEE Press, New Jersey, 2009.

    21. Caloz, C. and T. Itoh, "Application of the transmission line theory of left-handed (LH) materials to the realization of a microstrip `LH line'," IEEE Antennas and Propagation Society International Symposium, Vol. 2, 412-415, 2002.

    22. Bilotti, F., A. Toscano, L. Vegni, K. Aydin, K. B. Alici, and E. Ozbay, "Equivalent-circuit models for the design of metamaterials based on artificial magnetic inclusions," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, 2865-2873, 2007.
    doi:10.1109/TMTT.2007.909611