Vol. 26
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2010-11-05
The Dipole Impedance of an Aperture
By
Progress In Electromagnetics Research B, Vol. 26, 401-423, 2010
Abstract
The dipole impedance of an aperture in a plane conductor is obtained by modifying the general network formulation of electromagnetic apertures presented by Mautz and Harrington. The derived dipole impedances are combined in parallel to form an effective circuit description of low frequency aperture diffraction. Power transmitted into the aperture by an incident wave is determined by incorporating standard techniques for the transfer of wave power at an impedance mismatch. This transmitted power is divided into forward and backward scattered fields based upon the behavior of image currents surrounding the aperture, leading to a peak in forward scattered power above unity, consistent with known aperture behavior. The presented aperture circuit maintains an excellent correspondence with measurements of radiated power for an aperture excited by high energy electrons and with the numerically calculated impedance of a circular aperture using the finite element method.
Citation
Russell A. Stoneback, "The Dipole Impedance of an Aperture," Progress In Electromagnetics Research B, Vol. 26, 401-423, 2010.
doi:10.2528/PIERB10062406
References

1. Harrington, R. F., "Matrix methods for field problems," Proceedings of the IEEE, Vol. 55, No. 2, 136-149, 1967.
doi:10.1109/PROC.1967.5433

2. Harrington, R. F. and J. R. Mautz, "A generalized network formulation for aperture problems," IEEE Transactions on Antennas and Propagation, 870-873, 1976.
doi:10.1109/TAP.1976.1141420

3. Harrington, R. F. and D. T. Auckland, "Electromagnetic transmission through narrow slots in thick conducting screens," IEEE Transactions on Antennas and Propagation, Vol. 28, No. 5, 616-622, 1980.
doi:10.1109/TAP.1980.1142382

4. Harrington, R. F., "Resonant behavior of a small aperture backed by a conducting body," IEEE Transactions on Antennas and Propagation, Vol. 30, No. 2, 205-212, 1982.
doi:10.1109/TAP.1982.1142761

5. Mautz, J. R. and R. F. Harrington, "An admittance solution for electromagnetic coupling through a small aperture," Appl. Scien. Res., Vol. 40, 36-69, 1983.

6. Harrington, R. F. and J. R. Mautz, "Characteristic modes for aperture problems," IEEE Transactions on Microwave Theory and Techniques, Vol. 33, No. 6, 500-505, 1985.
doi:10.1109/TMTT.1985.1133105

7. Harrington, R. F. and J. R. Mautz, "Electromagnetic coupling through apertures by the generalized admittance approach," Comput. Phys. Comm., Vol. 68, 19-42, 1991.
doi:10.1016/0010-4655(91)90192-N

8. Wang, T., R. F. Harrington, and J. R. Mautz, "Electromagnetic scattering from and transmission through arbitrary apertures in conducting bodies," IEEE Transactions on Antennas and Propagation, Vol. 38, No. 11, 1805-1814, 1990.
doi:10.1109/8.102743

9. Leviatan, L., R. F. Harrington, and J. R. Mautz, "Electromagnetic transmission through apertures in a cavity in a thick conductor," IEEE Transactions on Antennas and Propagation, Vol. 30, No. 6, 1153-1165, 1982.
doi:10.1109/TAP.1982.1142926

10. Liang, C. and D. K. Cheng, "Generalized network representations for small-aperture coupling between dissimilar regions," IEEE Transactions on Antennas and Propagation, Vol. 31, No. 1, 177-182, 1983.
doi:10.1109/TAP.1983.1143007

11. Hsi, S., R. F. Harrington, and J. R. Mautz, "Electromagnetic coupling to a conducting wire behind an aperture of arbitrary size and shape," IEEE Transactions on Antennas and Propagation, Vol. 33, No. 6, 581-587, 1985.
doi:10.1109/TAP.1985.1143628

12. Jeng, S. K., "Scattering from a cavity-backed slit in a ground plane-TE case," IEEE Transactions on Antennas and Propagation, Vol. 38, 1523-1529, 1990.
doi:10.1109/8.59763

13. Bethe, H., "Theory of diffraction by small holes," Phys. Rev., Vol. 66, No. 7--8, 163-182, 1944.
doi:10.1103/PhysRev.66.163

14. Bouwkamp, C. J., "Diffraction theory," Rep. on Prog. in Phys., Vol. 17, 35-100, 1954.
doi:10.1088/0034-4885/17/1/302

15. Garcia de Abajo, F. J., "Light transmission through a single cylindrical hole in a metallic film," Opt. Exp., Vol. 10, No. 25, 1475-1484, 2002.

16. Roberts, A., "Electromagnetic theory of diffraction by a circular aperture in a thick, perfectly conducting screen," J. Opt. Soc. Am., Vol. 4, No. 10, 1970-1983, 1987.
doi:10.1364/JOSAA.4.001970

17. Degiron, A., H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, "Optical transmission properties of a single subwavelength aperture in a real metal," Opt. Comm., Vol. 239, No. 1--3, 61-66, 2004.
doi:10.1016/j.optcom.2004.05.058

18. Rayleigh, L., Theory of Sound, Dover Publications, New York, 1945.

19. Blackstock, D. T., Fundamentals of Physical Acoustics, Wiley-Interscience, New York, 2000.

20. Chang, C., A. K. Sarychev, and V. M Shalaev, "Light diffraction by a subwavelength circular aperture," Laser Phys. Lett., Vol. 2, 351-355, 2005.
doi:10.1002/lapl.200510006

21. Ebbesen, T. W., H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature, Vol. 391, 667-669, 1998.
doi:10.1038/35570

22. Genet, C. and T. W. Ebbesen, "Light in tiny holes," Nature, Vol. 445, No. 7123, 39-46, 2007.
doi:10.1038/nature05350

23. Harrington, R. F., Time-Harmonic Electromagnetic Fields, IEEE Press, 2004.

24. Gluckstern, R. L. and R. K. Cooper, "Electric polarizability and magnetic susceptibility of small holes in a thin screen," IEEE Transactions on Microwave Theory and Techniques, Vol. 38, No. 2, 186-192, 1990.
doi:10.1109/22.46429

25. De Meulenaere, F. D. and J. Van Bladel, "Polarizability of some small apertures," IEEE Transactions on Antennas and Propagation, Vol. 25, No. 25, 198-205, 1977.
doi:10.1109/TAP.1977.1141568

26. Jackson, J. D., Classical Electrodynamics, John Wiley and Sons, New York, 1999.

27. Bortchagovsky, E., G. Colas Des Francs, D. Molenda, A. Naber, and U. C. Fisher, "Transmission of an obliquely incident beam of light though small apertures in a metal film," Appl. Phys. B, Vol. 85, No. 1--2, 49-53, 2006.
doi:10.1007/s00340-006-2296-9