Vol. 24
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2010-08-17
The Conductance Bandwidth of an Electrically Small Antenna in Antiresonant Ranges
By
Progress In Electromagnetics Research B, Vol. 24, 285-301, 2010
Abstract
Accurate approximations of the conductance and the conductance bandwidth of an electrically small antenna valid in resonant and antiresonant ranges were found. It is shown that the conductance bandwidth of an efficient antenna tuned on maximal power of radiation is inversely proportional to the magnitude of the frequency derivative of the input impedance |Z'cd)| of the antenna at frequency of maximal conductance. That is a generalization of the well known relationship according to which, the conductance bandwidth of an antenna tuned on resonance in resonant ranges is inversely proportional to the magnitude of the frequency derivative of the input reactance of the antenna |X'00)| at resonant frequency. Obtained approximate formulas display inverse proportionality of the conductance bandwidth to the approximate quality factor of the antenna throughout resonant and antiresonant ranges. A differential definition of the fractional conductance bandwidth was formulated, which is convenient for the case of closely spaced resonances of an antenna. As an example, numerical calculations for oblate spheroidal and spherical antennas in shells with negative permittivity in resonant and antiresonant ranges was used to confirm accuracy of the obtained approximations of the conductance and the conductance bandwidth of an electrically small antenna.
Citation
Oleg B. Vorobyev, "The Conductance Bandwidth of an Electrically Small Antenna in Antiresonant Ranges," Progress In Electromagnetics Research B, Vol. 24, 285-301, 2010.
doi:10.2528/PIERB10061206
References

1. Yaghjian, A. D. and S. R. Best, "Impedance, bandwidth and Q of antennas," IEEE Trans. Antennas Propag., Vol. 53, No. 4, 1298-1324, Apr., 2005.
doi:10.1109/TAP.2005.844443

2. Fante, R. L., "Quality factor of general ideal antennas," IEEE Trans. Antennas Propag., Vol. 17, No. 2, 151-155, Mar., 1969.
doi:10.1109/TAP.1969.1139411

3. Rhodes, D. R., "On the quality factor of strip and line source antennas and its relationship to super directivity ratio," IEEE Trans. Antennas Propag., Vol. 20, No. 3, 318-325, May, 1972.
doi:10.1109/TAP.1972.1140191

4. McLean, J. S., "A re-examination of the fundamental limits on the radiation Q of electrically small antennas," IEEE Trans. Antennas Propag., Vol. 44, No. 5, 672-676, May, 1996.
doi:10.1109/8.496253

5. Collin, R. E. and S. Rothschild, "Evaluation of antenna Q," IEEE Trans. Antennas Propag., Vol. 17, No. 1, 23-27, Jan., 1964.
doi:10.1109/TAP.1964.1138151

6. Gustafsson, M. and S. Nordebo, "Bandwidth, Q factor, and resonance models of antennas," Progress In Electromagnetics Research, Vol. 62, 1-20, 2006.
doi:10.2528/PIER06033003

7. Vassiliadis, A. and R. L. Tanner, "Evaluating the impedance broadbanding of antennas," IEEE Trans. Antennas Propag., Vol. 6, No. 3, 226-231, Jul., 1958.

8. Stuart, H. R., S. R. Best, and A. D. Yaghjian, "Limitations in relating quality factor to bandwidth in a double resonance small antenna," IEEE Antennas and Wireless Propag. Lett., Vol. 6, No. 6, 460-463, 2007.
doi:10.1109/LAWP.2007.905018

9. Vorobyev, O. B., "Efficient electrically small oblate spheroidal and spherical antennas in shells with negative permittivity," Progress In Electromagnetics Research B, Vol. 21, 151-170, 2010.

10. Stuart, H. R. and A. Pidwerbetsky, "Electrically small antenna elements using negative permittivity resonators," IEEE Trans. Antennas Propag., Vol. 54, No. 6, 1644-1653, Jun., 2006.
doi:10.1109/TAP.2006.875498

11. Stén, J. C.-E., "Radiation Q of a small antenna enclosed in an oblate spheroidal volume: Transverse-to-axis polarisation," AEÜ --- Int. J. Electron. Commun., Vol. 57, No. 3, 201-205, 2003.
doi:10.1078/1434-8411-54100162

12. Wang, Y., J. Z. Li, and L. X. Ran, "An equivalent circuit modeling method for ultra wide-band antennas," Progress In Electromagnetics Research, Vol. 82, 433-445, 2008.
doi:10.2528/PIER08032303

13. Ziolkowski, R. W. and A. Erentok, "Metamaterial-based efficient electrically small antennas," IEEE Trans. Antennas Propag., Vol. 54, No. 7, 2113-2130, Jul., 2006.
doi:10.1109/TAP.2006.877179

14. Adams, J. J. and J. T. Bernhard, "Tuning method for a new electrically small antenna with low Q," IEEE Antennas Wireless Propag. Lett., Vol. 8, 303-306, 2009.
doi:10.1109/LAWP.2009.2015437

15. Best, S. R., "Low Q electrically small linear and elliptical polarized spherical dipole antennas," IEEE Trans. Antennas Propag., Vol. 53, 1047-1053, 2005.
doi:10.1109/TAP.2004.842600

16. Best, S. R., "A comparison of electrically small spherical helix and spherical resonator antennas," The Second European Conference on Antennas and Propagation, EuCAP, 1-6, Nov. 11--16, 2007.