Vol. 23
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2010-07-21
Theoretical Analysis of a Passive Acoustic Brain Monitoring System
By
Progress In Electromagnetics Research B, Vol. 23, 165-180, 2010
Abstract
An approach based on acoustics and its theoretical analogies to electromagnetism is used in the present research to study the detection of the acoustic wave energy radiated by the thermal random motion of material particles of the brain during activation or caused by pathology. Pressure and particle velocity are calculated in analytical mathematical forms for the case of human brain monitoring, which can be implemented by a prototype passive acoustic brain monitoring system (PABMOS). Representing theoretically the configuration of this approach, a sphere is used to model the human head and an internal point source in order to simulate potential pressure alterations due to intracranial abnormalities or local functional activations. Finally, numerical results concerning the particle velocity (pressure field distribution) at the surface of the head model, which can implicitly be measured by the suitable piezoelectric sensors of the system, for arbitrary positions of the internal source, are presented.
Citation
Nikolaos P. Asimakis, Irene Karanasiou, P. K. Gkonis, and Nikolaos Uzunoglu, "Theoretical Analysis of a Passive Acoustic Brain Monitoring System," Progress In Electromagnetics Research B, Vol. 23, 165-180, 2010.
doi:10.2528/PIERB10053112
References

1. Skudrzyk, E., The Foundations of Acoustics, Ch. 13, Springer-Verlag, Wien, New York, 1971.
doi:10.1007/978-3-7091-8255-0

2. Chaudhry, S. M. and A. M. Chaudhry, "System identification of acoustic characteristics of enclosures with resonant second order dynamics," Progress In Electromagnetics Research, Vol. 61, 89-110, 2006.
doi:10.2528/PIER06010702

3. Bridger, K., "Brain assessment monitor," J. Acoust. Soc. Am., Vol. 118, No. 4, 2114-2114, October 2005.
doi:10.1121/1.2125265

4. Karanasiou, I. S., N. K. Uzunoglu, and A. Garetsos, "Electro-magnetic analysis of a non-invasive 3D passive microwave imaging system," Progress In Electromagnetics Research, Vol. 44, 287-308, 2004.
doi:10.2528/PIER03080801

5. Karanasiou, I. S., N. K. Uzunoglu, and C. Papageorgiou, "Towards functional non-invasive imaging of excitable tissues inside the human body using focused microwave radiometry," IEEE Trans. Microwave Theory and Tech., Vol. 52, 1898-1908, 2004.
doi:10.1109/TMTT.2004.831999

6. Gouzouasis, I. A., K. T. Karathanasis, I. S. Karanasiou, and N. K. Uzunoglu, "Contactless passive diagnosis for brain intracranial applications: A study using dielectric matching materials," Bioelectromagnetics, (in press).

7. Karathanasis, K. T., I. A. Gouzouasis, I. S. Karanasiou, M. Giamalaki, G. Stratakos, and N. K. Uzunoglu, "Non-invasive focused monitoring and irradiation of head tissue phantoms at microwave frequencies," IEEE Trans. Inf. Technol. Biomed., (in press).

8. Chen, G. P., W. B. Yu, Z. Q. Zhao, Z. P. Nie, and Q. H. Liu, "The prototype of microwave-induced thermo-acoustic tomography imaging by time reversal mirror," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 11--12, 1565-1574, 2008.
doi:10.1163/156939308786390021

9. Ismail, N. H. and A. T. Ibrahim, "Temperature distribution in the human brain during ultrasound hyperthermia," Journal of Electromagnetic Waves and Applications, Vol. 16, No. 6, 803-811, 2002.
doi:10.1163/156939302X00165

10. Lazaro, A., D. Girbau, and R. Villarino, "Analysis of vital signs monitoring using an IR-UWB radar," Progress In Electromagnetics Research, Vol. 100, 265-284, 2010.
doi:10.2528/PIER09120302

11. Ishimaru, A., Electromagnetic Wave Propagation, Radiation, and Scattering, Ch. 2, Prentice Hall Inc., New Jersey, 1991.

12. Lamb, H., The Dynamical Theory of Sound, 2nd Ed., Ch. 4, E. Arnold, 1910.

13. Morse, P. M. and H. Feshbach, Methods of Theoretical Physics, Part I, Ch. 7, McGraw-Hill, New York, 1953.

14. Morse, P. M. and H. Feshbach, Methods of Theoretical Physics, Part II, Ch. 13, McGraw-Hill, New York, 1953.

15. Rothwell Edward, J. and J. Cloud Michael, Electromagnetics, Appendix A, CRC Press, 2001.
doi:10.1201/9781420058260

16. Vanderlinde, J., Classical Electromagnetic Theory, 2nd Ed., Ch. 10, Springer, 2004.

17. Lawrence, K. E., R. A. Frey, B. A. Coppens, and V. J. Sanders, Fundamentals of Acoustics, 3rd Ed., Ch. 5, John Wiley & Sons, 1982.

18. Murray, R. S., Schaum's Mathematical Handbook of Formulas and Tables, 2nd Ed., McGraw-Hill, 1999.

19. Gisolfi, V. C. and F. Mora, The Hot Brain: Survival, Temperature and the Human Body, The MIT Press, Cambridge, Massachusetts, 2000.

20. Elwassif, M. M., Q. Kong, M. Vazquez, and M. Bikson, "Bio-heat transfer model of deep brain stimulation-induced temperature changes," Journal of Neural Engineering, Vol. 3, 306-315, 2006.
doi:10.1088/1741-2560/3/4/008