Vol. 20
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2010-04-23
A General Framework for the Analysis of Metamaterial Transmission Lines
By
Progress In Electromagnetics Research B, Vol. 20, 353-373, 2010
Abstract
This paper presents a closed-form analysis of composite right/left handed transmission lines. The ladder network structure of the transmission line allows to obtain a rational form of any twoport network representation. As a consequence of the rational form of the transfer functions, poles and residues are easily computed and the dominant ones selected leading to an efficient time-domain macromodel. The numerical results confirm the robustness and the accuracy of the proposed method in capturing the physics of composite right/left handed transmission lines.
Citation
Giulio Antonini, "A General Framework for the Analysis of Metamaterial Transmission Lines," Progress In Electromagnetics Research B, Vol. 20, 353-373, 2010.
doi:10.2528/PIERB10030601
References

1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Usp. Fiz. Nauk., Vol. 92, 517-526, 1967 (in Russian).

2. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp., Vol. 47, 509-514, January-February 1968.

3. Smith, D. R., D. C. Vier, W. J. Padilla, , S. C. Nemat-Nasser, and S. Schultz, "Loop-wire for investigating plasmons at microwave frequencies ," Appl. Phys. Lett., Vol. 75, No. 10, 1425-1427, September 1999.
doi:10.1063/1.124714

4. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permittivity and permeability ," Phys. Rev. Lett., Vol. 84, 4184-4187, May 2000.
doi:10.1103/PhysRevLett.84.4184

5. Engheta, N. and R. W. Ziolkowski, "A positive future for double-negative metamaterials," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 4, 1536-1556, April 2005.

6. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, Wiley-IEEE Press, 2005.

7. Eleftheriades, G. V. and K. G. Balmain, "Negative Refraction Metamaterials: Fundamental Principles and Applications," Wiley-IEEE Press, 2005.

8. Caloz, C. and T. Itoh, "Transmission line approach of left-handed (LH) materials and microstrip implementation of an artificial LH transmission line," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 5, 1159-1166, May 2004.
doi:10.1109/TAP.2004.827249

9. Lai, A., C. Caloz, and T. Itoh, "Composite right/left-handed transmission line metamaterals," IEEE Microwave Magazine, 34-50, September 2004.
doi:10.1109/MMW.2004.1337766

10. Eleftheriades, G. V., O. Siddiqui, and A. K. Iyer, "Transmission line models for negative refractive index media and associated implementations without excess resonators ," IEEE Microwave and Wireless Components Letters, Vol. 13, No. 2, 51-53, February 2003.
doi:10.1109/LMWC.2003.808719

11. Grbic, A. and G. V. Eleftheriades, "Negative refraction, growing evanescent waves and sub-diffraction imaging in loaded transmission-line metamaterials," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 12, 2297-2305, December 2003.

12. Sanada, A., C. Caloz, and T. Itoh, "Characteristics of the composite right/left-handed transmission lines," IEEE Microwave and Wireless Components Letters, Vol. 14, No. 2, 68-70, November 2004.
doi:10.1109/LMWC.2003.822563

13. Horii, Y., C. Caloz, and T. Itoh, "Super-compact multilayered left-handed transmission line and diplexer application," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 4, 1527-1534, April 2005.
doi:10.1109/TMTT.2005.845189

14. Caloz, C., "Dual composite right/left-handed (D-CRLH) transmission line metamaterial," IEEE Microwave and Wireless Components Letters, Vol. 16, No. 11, 585-587, November 2006.
doi:10.1109/LMWC.2006.884773

15. Rennings, A., S. Otto, J. Mosig, C. Caloz, and I.Wolff, "Extended composite right/left handed (E-CRLH) metamaterial and its application as quadband quarter-wavelength transmisson line," Asia-Paci¯c Microwave Conference Digest, Yokohama, December 2006.

16. Eleftheriades, G. V., "A generalized negative-refractive-index transmission line (NRI-TL) metamaterial for dual-band and quad-band applications," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 6, 415-417, June 2007.
doi:10.1109/LMWC.2007.897786

17. Rennings, A., T. Liebig, C. Caloz, and I. Wolff, "Double-Lorentz transmission line metameterials and its applications to tri-band devices," IEEE Microw. Symposium Digest, 1427-1430, Hololulu, Hawaii, USA, June 2009.

18. Camacho-Penalosa, C. and T. M. Martin-Guerrero, "Derivation and general properties of artificial lossless balanced composite right/left handed transmission lines of arbitrary order," Progress In Electromagnetic Research B, Vol. 13, 151-169, 2009.
doi:10.2528/PIERB09011002

19. Perruisseau-Carrier, J., R. Fritschi, P. Crespo-Valero, and A. K. Skrivervik, "Modeling of periodic distributed MEMS-application to the design of variable true-time delay lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 1, 383-392, January 2010.
doi:10.1109/TMTT.2005.860297

20. Zhang, Y. and B. E. Spielman, "A stability analysis for timedomain method of moments analysis of 1-D double-negative transmission lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 9, 1887-1898, September 2007.
doi:10.1109/TMTT.2007.904061

21. Gomez-Diaz, J. S., S. Gupta, A. Alvarez-Melcon, and C. Caloz, "Investigation on the phenomenology of impulse-regime metamaterial transmission lines," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 12, 4010-4014, December 2009.
doi:10.1109/TAP.2009.2025400

22., IEEE, Standard for Validation of Computational Electromagnetic (CEM) Computer Modeling and Simulation, and Recommended Practice, Part I, IEEE, June 2008.

23. Duffy, A., A. Martin, A. Orlandi, G. Antonini, T. M. Benson, and M. Woolfson, "Feature Selective Validation (FSV) for validation of Computational Electromagnetics (CEM). Part I --- The FSV Method," IEEE Transactions on Electromagnetic Compatibility, Vol. 48, No. 2, 449-459, August 2006.
doi:10.1109/TEMC.2006.879358

24. Duffy, A., A. Martin, A. Orlandi, G. Antonini, T. M. Benson, and M. Woolfson, "Feature selective validation (FSV) for validation of computational electromagnetics (CEM). Part II --- Numerical verification," IEEE Transactions on Electromagnetic Compatibility, Vol. 48, No. 2, 460-469, August 2006.

25. Frickey, D. A., "Conversion between S, Z, Y, h, ABCD and T parameters which are valid for complex source and load impedances," IEEE Transactions on Microwave Theory and Techniques, Vol. 42, No. 2, 205-211, February 1994.
doi:10.1109/22.275248

26. Pozar, D., "Microwave Engineering," John Wiley and Sons, New York, 1998.

27. Ho, C., A. Ruehli, and P. Brennan, "The modified nodal approach to network analysis," IEEE Transactions on Circuits and Systems, Vol. 22, No. 6, 504-509, June 1975.
doi:10.1109/TCS.1975.1084079

28. Pillegi, L., R. Rohrer, and C. Visweswariah, "Electronic Circuits and System Simulation Methods," McGraw-Hill Book Company, 1995.

29. Faccio, M., G. Ferri, and A. D'Amico, "A new fast method for ladder networks characterization," IEEE Transactions on Circuits and Systems, Vol. 38, No. 11, 1377-1382, November 1991.
doi:10.1109/31.99169

30. Antonini, G. and G. Ferri, "A new approach for closed-form transient analysis of multiconductor transmission lines," IEEE Transactions on Electromagnetic Compatibility, Vol. 46, No. 4, 529-543, November 2004.
doi:10.1109/TEMC.2004.837684

31. Faccio, M., G. Ferri, and A. D'Amico, "The DFF and DFFz triangles and their mathematical properties," Applications of Fibonacci Numbers, Vol. 5, 199-206, G. E. Bergum et al., eds. 1990.

32. Antonini, G., "A new methodology for the transient analysis of lossy and dispersive multiconductor transmission lines ," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 9, 2227-2239, September 2004.
doi:10.1109/TMTT.2004.834581

33. Kailath, T., "Linear Systems," Prentice Hall, Englewood Cliffs, NJ, 1980.

34. Chen, C. T., "Linear System Theory and Design," Holt, Rinehart, Winston, New York, 1984.

35. Ruberti, A. and S. Monaco, "Teoria dei Sistemi," Pitagora Editrice Bologna, 1998.

36. Neumayer, R., A. Steltzer, F. Haslinger, and R. Weigel, "On the synthesis of equivalent-circuit models for multiports characterized by frequency-dependent parameters ," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 12, 2789-2796, December 2002.
doi:10.1109/TMTT.2002.805296

37. Nagel, L. W., "SPICE: A computer program to simulate semiconductor circuits," Electr. Res. Lab. Report ERL M520, University of California, Berkeley, May 1975.

38. Shichman, H., "Integration system of a nonlinear network analysis program ," IEEE Transactions on Circuits and Systems, Vol. 17, 378-386, August 1970.