Vol. 16
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2009-08-03
A Novel Wide-Band Microstrip Yagi-Uda Array Antenna for WLAN Applications
By
Progress In Electromagnetics Research B, Vol. 16, 389-406, 2009
Abstract
This paper presents a design of Wide-Band Microstrip Yagi-Uda antenna with high gain and high front to back (F/B) ratio. Numerical and measured results of our design show more than 18dB front to back ratio at 5.5 GHz and no backward radiation at 5.2 GHz. An impedance bandwidth of 22.05% was achieved around 5.5 GHz. The antenna gain (10-12.4 dBi) can be varied to be suitable for various applications. Measured return loss and radiation pattern of this antenna is presented to validate the results of simulations by two methods. The first method based on finite element method (FEM) and the second one based on finite integral technique (FIT) were used to analyze antenna structure, and subsequently the Genetic Algorithm (GA) was applied by using HFSS simulator to obtain the optimized parameters. In order to find the best design method for this antenna, the effect of distance between the parasitic elements of proposed antenna was studied. Finally two microstrip Yagi-Uda array antennas were combined to increase the gain of antenna. To demonstrate the major benefits, a comparison of our initial and final designs of Yagi-Uda antenna is provided.
Citation
Mohammad Bemani, and Saeid Nikmehr, "A Novel Wide-Band Microstrip Yagi-Uda Array Antenna for WLAN Applications," Progress In Electromagnetics Research B, Vol. 16, 389-406, 2009.
doi:10.2528/PIERB09053101
References

1. Takimoto, Y., "Recent activities on millimeter wave indoor LAN system development in Japan," Dig. IEEE Microwave Theory and Techniques Society Int. Symp., 405-408, Jun. 1995.

2. Morinaga, N. and A. Hashimoto, "Technical trend of multimedia mobile and broadband wireless access systems," Trans. IEICE, Vol. E82-B, No. 12, 1897-1905, Dec. 1999.

3. Wu, Y.-J., B.-H. Sun, J.-F. Li, and Q.-Z. Liu, "Tripl-band omni-directional antenna for WLAN application," Progress In Electromagnetics Research, Vol. 76, 477-484, 2007.
doi:10.2528/PIER07080601

4. Misra, I. S., R. S. Chakrabarty, and B. B. Mangaraj, "Design, analysis and optimization of V-dipole and its three-element Yagi-Uda array," Progress In Electromagnetics Research, Vol. 66, 137-156, 2006.
doi:10.2528/PIER06102604

5. Tran, A. and M. C. E. Yagoub, "Intertwined two-section dual-polarized log periodic dipole antenna," PIERS Proceedings, 30-33, Prague, Czech Republic, Aug. 27-30, 2007.

6. Densmore, A. and J. Huang, "Microstrip Yagi antenna for mobile satellite service," IEEE Antennas and Propagation Society Int. Symp., Vol. 2, 616-619, Jun. 1991.

7. Zhang, X. C., J. G. Liang, and J. W. Xie, "The Quasi-Yagi antenna subarrat fed by an orthogonal T junction," Progress In Electromagnetics Research Letters, Vol. 4, 109-112, 2008.
doi:10.2528/PIERL08050711

8. Chen, C. A. and D. K. Cheng, "Optimum element lengths for Yagi-Uda arrays," IEEE Trans. Antennas and Propagation, Vol. 23, Jan. 1975.

9. Lee, K. F., et al., "Microstrip antenna array with parasitic elements," IEEE Antennas and Propagation Society Symposium Dig., 794-797, Jun. 1987.

10. Haneishi, M., et al., "Beam-shaping of microstrip antenna by parasitic elements having coaxial stub," Trans. IECE of Japan, Vol. 69-B, 1160-1161, 1986.

11. Huang, J., "Planar microstrip Yagi array antenna," IEEE Antennas and Propagation Society Int. Symp., Vol. 2, 894-897, Jun. 1989.

12. Gray, D., J. Lu, and D. Thiel, "Electronically steerable Yagi-Uda microstrip patch antenna array," IEEE Trans. Antennas and Propagation, Vol. 46, No. 5, 605-608, May 1998.
doi:10.1109/8.668900

13. Padhi, S. and M. Bialkowski, "Investigations of an aperture coupled microstrip Yagi antenna using PBG structure," IEEE Antennas and Propagation Society Int. Symp., Vol. 3, 752-755, Jun. 2002.

14. Yablonovitch, E., "Photonic band-gap structures," Journal of Optical Society of America B, Vol. 10, 283-295, 1993.
doi:10.1364/JOSAB.10.000283

15. Yang, F., K. Mu, Y. Quin, and T. Itoh, "A unipolar photonic bandgap (UC-PBG) structure and its applications for microwave circuits," IEEE Trans. Microwave Theory Technique, Vol. 47, 1509-1514, Aug. 1999.
doi:10.1109/22.780402

16. Fu, Y. Q., G. H. Zhang, and N. C. Yuan, "A novel PBG coplanar waveguide," IEEE Microwave and Wireless Components Letters, Vol. 11, Nov. 2001.

17. Gonzalo, R., P. D. Maagt, and M. Sorolla, "Enhanced patch-antenna performance by suppressing surface waves by using photonic bandgap substrates," IEEE Trans. Microwave Theory and Techniques, Vol. 47, 2131-2139, Nov. 1999.
doi:10.1109/22.798009

18. DeJean, G. R. and M. M. Tentzeris, "A new high-gain microstrip Yagi array antenna with a high front-to-back (F/B) ratio for WLAN and millimeter-wave applications," IEEE Trans. Antennas and Propagation, Vol. 55, Feb. 2007.

19. HFSS: High frequency structure simulator based on the finiteElement method, v. 9.2.1, , Ansoft Corporation, 2004.

20. CST GmbH 2008 CST MICROWAVE STUDIO(r) User Manual V. 5.0, Darmstadt, , Germany (www.cst.de).

21. R/T Duroid Laminates, Rogers Corporation, , Rogers, CT, 2008.