Vol. 15
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2009-06-18
Grounded Uniaxial Material Slabs as Magnetic Conductors
By
Progress In Electromagnetics Research B, Vol. 15, 267-283, 2009
Abstract
The objective of this paper is all-angle artificial magnetic conductor, i.e., artificial magnetic conductor that has stable magnetic-wall effect with respect to the incidence angle. Furthermore, we seek for a design that would be easy for manufacturing. In order to achieve this we use grounded uniaxial material slabs and we do not constrict ourselves to naturally available materials. Instead, we assume that the desired parameters can be synthesized using the emerging artificial electromagnetic materials. It is found that it is possible to have an all-angle magnetic-wall effect for both TE and TM polarization. Especially for the TM fields the structure would be easily manufacturable. The proposed structure has similar appearance as more well-known artificial impedance surfaces, but the design parameters and the physical properties behind the magnetic wall effect are novel. The performance of the proposed artificial magnetic conductor is verified with numerical simulations. This paper introduces a new approach how to obtain a magnetic-wall effect. It is possible to use this this approach also together with other ways of obtaining the magnetic-wall effect for dual-band operation.
Citation
Olli Luukkonen, Constantin R. Simovski, and Sergei Tretyakov, "Grounded Uniaxial Material Slabs as Magnetic Conductors," Progress In Electromagnetics Research B, Vol. 15, 267-283, 2009.
doi:10.2528/PIERB09050702
References

1. Sievenpiper, D., L. Zhang, R. F. J. Broas, N. G. Alexopoulos, and E. Yablonovich, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Microwave Theory Tech., Vol. 47, 2059-2074, 1999.
doi:10.1109/22.798001

2. Monorchio, A., G. Manara, and L. Lanuzza, "Synthesis of artificial magnetic conductors by using multilayered frequency selective surfaces," IEEE Antennas and Wireless Propagation Letters, Vol. 1, No. 11, 196-199, 2002.
doi:10.1109/LAWP.2002.807956

3. Clavijo, S., R. E. Diaz, W. E. McKinzie, and III, "High-impedance surfaces: An artificial magnetic conductor for a positive gain electrically small antennas," IEEE Trans. Antennas Propagat., Vol. 51, No. 10, 2678-2690, 2003.
doi:10.1109/TAP.2003.817575

4. Kern, D. J., D. H. Werner, A. Monorchio, L. Lanuzza, and M. J. Wilhelm, "The design synthesis of multiband artificial magnetic conductors using high impedance frequency selective surfaces," IEEE Trans. Antennas Propagat., Vol. 53, No. 1, 8-17, 2005.
doi:10.1109/TAP.2004.840540

5. Feresidis, A. P., G. Goussetis, W. Shenhong, and J. C. Vardaxoglou, "Arti¯cial magnetic conductor surfaces and their application to low-profile high-gain planar antennas," IEEE Trans. Antennas Propagat., Vol. 53, No. 1, 209-215, 2005.
doi:10.1109/TAP.2004.840528

6. Simovski, C. R., P. de Maagt, and I. V. Melchakova, "High-impedance surface having stable resonance with respect to polarization and incidence angle ," IEEE Trans. Antennas Propagat., Vol. 53, No. 3, 454-460, 2005.
doi:10.1109/TAP.2004.842598

7. Goussettis, G., A. P. Feresidis, and J. C. Vardaxoglou, "Tailoring the AMC and EBG characteristics of periodic metallic arrays printed on grounded dielectric substrate ," IEEE Trans. Antennas Propagat., Vol. 54, No. 1, 82-89, 2006.
doi:10.1109/TAP.2005.861575

8. Luukkonen, O., C. Simovski, G. Granet, G. Goussetis, D. Lioubtchenko, A. V. Raisanen, and S. A. Tretyakov, "Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips or patches," IEEE Trans. Antennas Propagat., Vol. 56, No. 6, 1624-1632, June 2008.
doi:10.1109/TAP.2008.923327

9. Luukkonen, O., C. Simovski, A. V. Raisanen, and S. A. Tretyakov, "An efficient and simple analytical model for analysis of propagation properties in impedance waveguides," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 7, 1624-1632, July 2008.
doi:10.1109/TMTT.2008.925236

10. Kildal, P.-S., "Artificially soft and hard surfaces in electromagnetics," IEEE Trans. Antennas Propagat., Vol. 38, No. 10, 1537-1544, Oct. 1990.
doi:10.1109/8.59765

11. Ziolkowski, R. W. and A. D. Kipple, "Application of double negative materials to increase the power radiated by electrically small antennas ," IEEE Trans. Antennas Propagat., Vol. 51, No. 10, 2626-2640, 2003.
doi:10.1109/TAP.2003.817561

12. Erentok, A., P. L. Luljak, and R. W. Ziolkowski, "Characterization of a volumetric metamaterial realization of an artificial magnetic conductor for antenna applications," IEEE Trans. Antennas Propagat., Vol. 53, No. 1, 160-172, 2005.
doi:10.1109/TAP.2004.840534

13. Hirvonen, M. and J. C.-E. Sten, "Power and Q of a horizontal dipole over a metamaterial coated conducting surface," IEEE Trans. Antennas Propagat., Vol. 56, No. 3, 684-690, 2008.
doi:10.1109/TAP.2008.916937

14. Hirvonen, M. and S. A. Tretyakov, "Near-zero permittivity substrates for horizontal antennas: Performance enhancement and limitations," Microw. and Optical Techn. Lett., Vol. 50, No. 10, 2674-2677, 2008.
doi:10.1002/mop.23739

15. Sihvola, A., S. Tretyakov, and A. de Baas, "Metamaterials with extreme material parameters," Journal of Communications Technology and Electronics, Vol. 52, No. 9, 986-990, 2007.
doi:10.1134/S1064226907090057

16. Tretyakov, S. A., Analytical Modeling in Applied Electromagnetics, Artech House, Norwood, MA, 2003.

17. Ikonen, P., M. Lapine, I. Nefedov, and S. Tretyakov, "Vector circuit theory for spatially dispersive uniaxial magneto-dielectric slabs," Progress In Electromagnetics Research, Vol. 63, 279-294, 2006.
doi:10.2528/PIER06052902

18. King, R. J., D. V. Thiel, and K. S. Park, "The synthesis of surface reactance using an artificial dielectric," IEEE Trans. Antennas Propagat., Vol. 31, No. 3, 471-476, May 1983.
doi:10.1109/TAP.1983.1143071

19. Silveirinha, M. G., C. A. Fernandes, and J. R. Costa, "Electromagnetic characterization of textured surfaces formed by metallic pins," IEEE Trans. Antennas Propagat., Vol. 56, No. 2, 405-415, Feb. 2008.
doi:10.1109/TAP.2007.915442

20. Shvets, G., "Photonic approach to making a surface wave accelerator," AIP Conference Proceedings, Vol. 647, 371, 2002.
doi:10.1063/1.1524892

21. Belov, P. A., R. Marques, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, and S. A. Tretyakov, "Strong spatial dispersion in wire media in the very large wavelength limit," Physical Review B, Vol. 67, 113103, 2003.
doi:10.1103/PhysRevB.67.113103

22. Simovski, C. R. and P. Belov, "Low-frequency spatial dispersion in wire medium," Physical Review E, Vol. 70, 046616, 2004.
doi:10.1103/PhysRevE.70.046616

23. Demetriadou, A. and J. Pendry, "Taming spatial dispersion in wire metamaterial," J. Phys.: Condens. Matter, Vol. 20, 295222, 2008.
doi:10.1088/0953-8984/20/29/295222

24. Yakovlev, A. B., O. Luukkonen, C. R. Simovski, S. A. Tretyakov, S. Paulotto, P. Baccarelli, and G. W. Hanson, "Analytical modeling of surface waves on high impedance surfaces," Metamaterials and Plasmonics: Fundamentals, Modelling, Applications, 239-254, S. Zouhdi, A. Sihvola, and A. P. Vinogradov (eds.), NATO Science for Peace and Security Series B, 2009.

25. Luukkonen, O., M. G. Silveirinha, A. B. Yakovlev, C. R. Simovski, I. S. Nefedov, and S. A. Tretyakov, "Homogenization models for the analysis of reflection properties of mushroom structures," Proc. 2nd International Congress on Advanced Electromagnetic Materials in Microwaves and Optics, 208-210, Pamplona, Spain, September 21-26, 2008.

26. Yakovlev, A. B., M. G. Silveirinha, O. Luukkonen, C. R. Simovski, I. S. Nefedov, and S. A. Tretyakov, "Homogenization models for the analysis of surface waves on analysis of surface waves on mushroom structures," Proc. 2nd International Congress on Advanced Electromagnetic Materials in Microwaves and Optics, 310-312, Pamplona, Spain, September 21-26, 2008.

27., Ansoft's homepage: http://www.ansoft.com/.

28. Luukkonen, O., F. Costa, A. Monorchio, and S. Tretyakov, "A thin electromagnetic absorber for wide incidence angles and both polarizations," IEEE Trans. Antennas Propagat., to appear, preprint available at http://arxiv.org/abs/0807.4831v3.

29. Lindell, I. V. and A. H. Sihvola, "Electromagnetic boundary and its realization with anisotropic metamaterial," Physical Review E, Vol. 79, 026604, 2009.
doi:10.1103/PhysRevE.79.026604

30. Lindell, I. V. and A. H. Sihvola, "Uniaxial IB-medium interface and novel boundary conditions," IEEE Trans. Antennas Propagat., Vol. 57, No. 3, 694-700, 2009.
doi:10.1109/TAP.2009.2013431