Vol. 13
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2009-02-09
Dispersion Flattened Optical Fiber Design for Large Bandwidth and High-Speed Optical Communications Using Optimization Technique
By
Progress In Electromagnetics Research B, Vol. 13, 21-40, 2009
Abstract
In this paper, design of the RII triple-clad structure as a dispersion flattened optical fiber including small pulse broadening factor as well as small dispersion and its slope applicable in broadband and fast communication is considered. The proposed optimization technique is based on the Genetic Algorithms (GA) consisting suitable fitness function for each application. The putting forward design method introduces the pulse broadening factor (?/?0) about 1.0016 after 200 Km propagation at the zero dispersion wavelength that is so excellent compared to the structure (1.2794) reported in [2] recently. Meanwhile, the proposed structure provides high bit rate (more than 197.8 Gb/Sec at 100 km), large dispersion length (larger than 17400 km), uniform dispersion slope ([0.04,-0.08] ps/km/nm2) and broad bandwidths as well as small and uniform dispersion (smaller than 2.02 ps/km/nm) at [1.55-1.7] μm wavelength interval even for core diameter larger than 4.62 μm. Another important thing discussed in this paper is a proposal for optimization of the broadening factor on large wavelength duration, which is necessary for large bandwidth applications. The suggested technique is capable to minimize the pulse broadening factor over duration of wavelengths that is necessary for large bandwidth applications such as dense wavelength division multiplexing (DWDM) and optical time division multiplexing (OTDM). Our calculation for extracting optical properties of the proposed structure is evaluated analytically. For this purpose modal analysis of these fibers for obtaining possible wave vectors for given system parameters are done using Transfer Matrix Method (TMM) in cylindrical coordinate.
Citation
Somaye Makouei, Morteza Savadi-Oskouei, Ali Rostami, and Zia Koozekanani, "Dispersion Flattened Optical Fiber Design for Large Bandwidth and High-Speed Optical Communications Using Optimization Technique," Progress In Electromagnetics Research B, Vol. 13, 21-40, 2009.
doi:10.2528/PIERB08110202
References

1. Varshney, R. K., A. K. Ghatak, I. C. Goyal, and S. Antony C, "Design of a flat field fiber with very small dispersion slope," Optical Fiber Technology, Vol. 9, 189-198, 2003.
doi:10.1016/S1068-5200(03)00042-7

2. Tian, X. and X. Zhang, "Dispersion-flattened designs of the large effective-area single-mode fibers with ring index profiles," Optics Communications, Vol. 230, 105-113, 2004.
doi:10.1016/j.optcom.2003.11.037

3. Zhang, X. and X. Tian, "Analysis of waveguide dispersion characteristics of WI- and WII-type triple-clad single-mode fibers," Optics & Laser Technology, Vol. 35, 237-244, 2003.
doi:10.1016/S0030-3992(02)00175-5

4. Kato, T., M. Hirano, A. Tada, K. Fokuada, T. Fujii, T. Ooishi, Y. Yokoyama, M. Yoshida, and M. Onishi, "Dispersion flattened transmission line consisting of wide-band non-zero dispersion shifted fiber and dispersion compensating fiber module," Optical Fiber Technology, Vol. 8, 231-239, 2002.
doi:10.1016/S1068-5200(02)00007-X

5. Agrawal, G. P., Fiber-optic Communication Systems, 3rd Ed., John Wiley & Sons, 2002.

6. Zhang, X. and X. Wang, "The study of chromatic dispersion and chromatic dispersion slope of WI- and WII-type triple-clad single-mode fibers," Optics & Laser Technology, Vol. 37, 167-172, 2005.
doi:10.1016/j.optlastec.2004.03.006

7. Ghatak, A. and K. Thyagarajan, Introduction to Fiber Optics, Cambridge University Press, 2002.

8. Nunes, F. D. and C. A. de Souza Melo, "Theoretical study of coaxial fibers," Applied Optics, Vol. 35, 388-398, 1996.
doi:10.1364/AO.35.000388

9. Goldberg, D. E., Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, Reading, 1989.

10. Sakai, J.-I. and T. Kimura, "Bending loss of propagation in arbitrary-index profile optical fibers," Applied Optics, Vol. 17, No. 10, 1978.
doi:10.1364/AO.17.001499

11. Yeh, P., Optical Waves in Layered Media, John Wiley & Sons, New York, 1988.

12. Zhang, X., L. Xie, X. Tian, and S. Hou, "Chirped Gaussian pulse broadening induced by chromatic dispersion in the triple-clad single-mode fiber with a depressed index inner cladding," Optical Fiber Technology, Vol. 10, 215-231, 2004.
doi:10.1016/j.yofte.2003.11.001

13. Hattori, H. T. and A. Safaei-Jazi, "Fiber designs with significantly reduced nonlinearity for very long distance transmission," Applied Optics, Vol. 37, 3190-3197, 1998.
doi:10.1364/AO.37.003190

14. Rostami, A. and M. Savadi-Oskouei, "Investigation of dispersion characteristic in MI- and MII-type single mode optical fibers," Optics Communications, Vol. 271, 413-420, 2007.
doi:10.1016/j.optcom.2006.10.072