Vol. 9
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2008-09-02
Optimization an Anechoic Chamber with Ray-Tracing and Genetic Algorithms
By
Progress In Electromagnetics Research B, Vol. 9, 53-68, 2008
Abstract
Anechoic chambers are used for both emission and immunity testing but the ferrite tiles used to line the inside of the chamber are extremely expensive. This paper describes a method of reducing the number of tiles, whilst ensuring a reliable test environment. In this paper, the ray-tracing method for waves propagation is used for evaluation of the reflectivity level of an anechoic chamber, and genetic algorithms are used. And use genetic algorithms to optimize the layout of ferrite tile absorber in a partially lined enclosure to produce a best performance. The results show that it is possible to cover just 80% of the surface of the enclosure with ferrite absorber and obtain good agreement by fully lined enclosure with an error of less than 3 percent over the whole test points.
Citation
Sayed Razavi, and Mohammad Khalaj-Amirhosseini, "Optimization an Anechoic Chamber with Ray-Tracing and Genetic Algorithms," Progress In Electromagnetics Research B, Vol. 9, 53-68, 2008.
doi:10.2528/PIERB08062902
References

1. Emerson, W. H., "Electromagnetic wave absorbers and anechoic chambers through the years," IEEE Transactions on Antennas and Propagation, Vol. 21, No. 4, July 1973.

2. Marquart, N. P., "Experimental anechoic chamber measurements of a target near an interface," Progress In Electromagnetics Research, Vol. 61, 143-158, 2006.
doi:10.2528/PIER06031003

3. Kineros, C. and V. Ungvichian, "A low cost conversion of semianechoic chamber to fully anechoic chamber for RF antenna measurements,", USA, 2003.

4. Bornkessel, C. and W. Wiesbeck, "Numerical analysis and optimization of anechoic chambers for EMC testing," IEEE Trans. Electromagn. Compat., Vol. 38, No. 3, 499-506, August 1996.
doi:10.1109/15.536082

5. Kim, H. and H. Ling, "Electromagnetic scattering from an inhomogeneous object by ray tracing," IEEE Trans. Antennas Propagat., Vol. 40, 517-525, May 1992.
doi:10.1109/8.142626

6. Chung, B.-K., C. H. Teh, and H.-T. Chuah, "Modeling of anechoic chamber using a beam-tracing technique," Progress In Electromagnetics Research, Vol. 49, 23-38, 2004.
doi:10.2528/PIER04020601

7. Jin, K.-S., T.-I. Suh, S.-H. Suk, B.-C. Kim, and H.-T. Kim, "Fast ray tracing using a space-division algorithm for RCS prediction," Journal of Electromagnetic. Waves and Appl., Vol. 20, No. 1, 119-126, 2006.
doi:10.1163/156939306775777341

8. Wang, N., Y. Zhang, and C.-H. Liang, "Creeping ray-tracing algorithm of UTD method based on nurbs models with the source on surface," Journal of Electromagnetic. Waves and Appl., Vol. 20, No. 14, 1981-1990, 2006.
doi:10.1163/156939306779322602

9. Liang, C.-H., Z.-L. Liu, and H. Di, "Study on the blockage of electromagnetic rays analytically," Progress In Electromagnetics Research B, Vol. 1, 253-268, 2008.
doi:10.2528/PIERB07102902

10. Balanis, C. A., Advanced Engineering Electromagnetics, Wiley, New York, 1989.

11. Johnson, J. M. and Y. Rahmat-Samii, "Genetic algorithms in engineering electromagnetic," IEEE Antennas Propagat. Mag., Vol. 39, 7-21, August 1997.
doi:10.1109/74.632992

12. Meng, Z., "Autonomous genetic algorithm for functional optimization," Progress In Electromagnetic Research, Vol. 72, 253-268, 2007.
doi:10.2528/PIER07031506

13. Tian, Y.-B. and J. Qian, "Ultraconveniently finding multiple solutions of complex transcendental equations based on genetic algorithm," Journal of Electromagnetic. Waves and Appl., Vol. 20, No. 4, 475-488, 2006.
doi:10.1163/156939306776117090

14. Mouysset, V., P. A. Mazet, and P. Borderies, "Optimization of broadband top-load antenna using micro-genetic algorithm," Journal of Electromagnetic. Waves and Appl., Vol. 20, No. 6, 803-817, 2006.
doi:10.1163/156939306776143398

15. Chen, X., D. Liang, and K. Huang, "Microwave imaging 3-D buried objects using parallel genetic algorithm combined with FDTD technique," Journal of Electromagnetic Waves and Appl., Vol. 20, No. 13, 1761-1774, 2006.
doi:10.1163/156939306779292264

16. Ngo Nyobe, E. and E. Pemha, "Shape optimization using genetic algorithms and laser beam propagation for the determination of the diffusion coefficient in a hot turbulent jet of air," Progress In Electromagnetics Research B, Vol. 4, 211-221, 2008.
doi:10.2528/PIERB08010605

17. Su, D., D.-M. Fu, and D. Yu, "Genetic algorithms and method of moments for the design of PIFAS," Progress In Electromagnetics Research Letters, Vol. 1, 9-18, 2008.
doi:10.2528/PIERL07110603

18. Dawson, J. F., "Improved magnetic loss for TLM," Electron. Lett., Vol. 29, No. 5, 467-468, 1993.
doi:10.1049/el:19930312

19. Chung, B.-K. and H.-T. Chuah, "Modeling of RF absorber for application in the design of anechoic chamber," Progress In Electromagnetics Research, Vol. 43, 273-285, 2003.
doi:10.2528/PIER03052601

20. Dawson, J. F., "Representing ferrite absorbing tiles as frequency dependent boundaries in TLM," Electron. Lett., Vol. 29, No. 9, 791-792, 1993.
doi:10.1049/el:19930529

21. Chamaani, S., S. A. Mirta, M. Teshnehlab, M. A. Shooredeli, and V. Seydi, "Modified multi-objective particle swarm optimization for electromagnetic absorber design," Progress In Electromagnetics Research, Vol. 79, 353-366, 2008.
doi:10.2528/PIER07101702

22. Khajehpour, A. and S. A. Mirtaheri, "Analysis of pyramid EM wave absorber by FDTD method and comparing with capacitance and homogenization methods," Progress In Electromagnetics Research Letters, Vol. 4, 123-131, 2008.
doi:10.2528/PIERL08021802

23. Abdelaziz, A. A., "Improving the performance of an antenna array by using radar absorbing cover," Progress In Electromagnetics Research Letters, Vol. 1, 129-138, 2008.
doi:10.2528/PIERL07112503