Vol. 7
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2008-04-15
Temperature Dependence Analysis of the Chromatic Dispersion in Wii-Type Zero-Dispersion Shifted Fiber (Zdsf)
By
Progress In Electromagnetics Research B, Vol. 7, 209-222, 2008
Abstract
In this paper, we design the zero-dispersion wavelength shifted fiber based on the WII-type triple clad single mode optical fiber and consider the transmission parameters fluctuations owing to environmental conditions such as temperature variations on dispersion behavior of fiber. In order to estimate the thermal coefficients, the model introduced by Ghosh [1] is applied. Our calculation show that the thermal coefficient extracted for the chromatic dispersion, its slope, and the zero dispersion wavelength swing are -1.21×10-3 ps/km/nm/oC, +2.96×10-3 ps/km/nm2/oC, and +3.33× 10-2 nm/oC at 1.55 μm respectively. It is shown that in optical fiber design especially for dense wavelength division multiplexing (DWDM) systems, effect of temperature on channel displacement is critical and should be considered carefully.
Citation
Ali Rostami, and Somayeh Makouei, "Temperature Dependence Analysis of the Chromatic Dispersion in Wii-Type Zero-Dispersion Shifted Fiber (Zdsf)," Progress In Electromagnetics Research B, Vol. 7, 209-222, 2008.
doi:10.2528/PIERB08040203
References

1. Ghosh, G., Photonics Technology Letters, Vol. 6, 431, 1994.

2. Li, Y. W., C. D. Hussey, and T. A. Briks, Lightwave Technology, Vol. 1, 1812, 1993.

3. Gosh, G., M. Endo, and T. Iwasaki, Lightwave Technology, Vol. 12, 1338, 1994.

4. Andre, P. S. and A. N. Pinto, Optics Communications, Vol. 246, 303, 2005.

5. Zhang, X. and X. Wang, Optics & Laser Technology, Vol. 37, 167, 2005.

6. Rostami, A. and M. S. Oskouei, Optics Communications,, Vol. 27, 4131, 2007.

7. Oskouei, M. S., S. Makouei, A. Rostami, and Z. D. K. Kanani, Applied Optics, Vol. 46, 6330, 2007.

8. Shahoei, H., H. Ghafoori-Fard, and A. Rostami, "A novel design methodology of multi-clad single mode optical fiber for broadband optical networks," Progress In Electromagnetics Research, Vol. 80, 253-275, 2008.
doi:10.2528/PIER07111003

9. Singh, S. P. and N. Singh, "Nonlinear effects in optical fibers: Origin, management and applications," Progress In Electromagnetics Research, Vol. 73, 249-275, 2007.
doi:10.2528/PIER07040201

10. Rostami, A. and A. Andalib, "A principal investigation of the group velocity dispersion (GVD) profile for optimum dispersion compensation in optical fibers: A theoretical study," Progress In Electromagnetics Research, Vol. 75, 209-224, 2007.
doi:10.2528/PIER07060402

11. Andalib, A., A. Rostami, and N. Granpayeh, "Analytical investigation and evaluation of pulse broadening factor propagating through nonlinear optical fibers (traditional and optimum dispersion compensated fibers)," Progress In Electromagnetics Research, Vol. 79, 119-136, 2008.
doi:10.2528/PIER07092502

12. Tripathi, R., R. Gangwar, and N. Singh, "Reduction of crosstalk in wavelength division multiplexed fiber optic communication systems," Progress In Electromagnetics Research, Vol. 77, 367-378, 2007.
doi:10.2528/PIER07081002

13. Ghosh, G., Applied Optics, Vol. 23, 976, 1984.

14. Kato, T., M. Hirano, A. Tada, K. Fokuada, T. Fujii, T. Ooishi, Y. Yokoyama, M. Yoshida, and M. Onishi, Optical Fiber Technology, Vol. 8, 231, 2002.

15. Agrawal, G. P., Fiber-Optic Communication Systems, John Wiley & Sons, 2002.