Vol. 5

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2008-02-28

Performance Analysis of a High Data Rate UWB-Dtr System in Dense Multipath Channels

By Hassan Khani and Paeiz Azmi
Progress In Electromagnetics Research B, Vol. 5, 119-131, 2008
doi:10.2528/PIERB08021003

Abstract

In this paper, a high data rate Ultra-Wideband Differential Transmitted-Reference (UWB-DTR) system which is one of the best and simplest available TR scheme is analyzed over IEEE 802.15.3a Channel Model 1 (CM1). We show that these systems need equalization in high data rate mode of operation because in such a case harsh nonlinear inter symbol interference (ISI) exists and degrades performance severely. The performance of the DTR system in CM1 is derived both analytically and via simulations by taking into account noise, inter path/pulse interference (IPI), and ISI. Uniform approximation for ISI distribution is proposed for the first time which gives a closer approximation than Gaussian one. All simulation and analytical results are obtained for CM1 but generalization to other channel models is also possible.

Citation


Hassan Khani and Paeiz Azmi, "Performance Analysis of a High Data Rate UWB-Dtr System in Dense Multipath Channels," Progress In Electromagnetics Research B, Vol. 5, 119-131, 2008.
doi:10.2528/PIERB08021003
http://jpier.org/PIERB/pier.php?paper=08021003

References


    1. Kolenchery, S. S., J. K. Townsend, and J. A. Freebersyser, A novel impulse radio network for tactical military wireless communications, Proc. Military Comm. Conf., Vol. 2, 59-65, 1998.

    2. Win, M. Z., X. Qiu, R. A. Scholtz, and V. O. K. Li, "ATM-based TH SSMA network for multimedia PCS," IEEE JSAC, Vol. 17, No. 5, 824-836, 1999.

    3. Aiello, G. R., G. D. Rogerson, R. A. Scholtz, and V. O. K. Li, "Ultrawideband wireless systems," IEEE Microwave Magazine, Vol. 4, No. 2, 36-47, 2003.
    doi:10.1109/MMW.2003.1201597

    4. Withington, P., H. Fluhler, and S. Nag, "Enhancing homeland security with advanced UWB sensors," IEEE Microwave Magazine, Vol. 4, No. 3, 51-58, 2003.
    doi:10.1109/MMW.2003.1237477

    5. Win, M. Z. and R. A. Scholtz, "Ultra-wide bandwidth time-hopping spread-spectrum impulse radio for wireless multiple-access communications," IEEE Trans. Commun., Vol. 48, No. 4, 679-691, 2000.
    doi:10.1109/26.843135

    6. Chen, F. C. and W. C. Chew, "Time-domain ultra-wideband microwave imaging radar system," Journal of Electromagnetic Waves and Applications, Vol. 17, 313-331, 2003.
    doi:10.1163/156939303322235842

    7. El-Fishawy, N., M. Shokair, and W. Saad, "Proposed MAC protocol versus IEEE 802.15.3a for multimedia transmission over UWB networks," Progress In Electromagnetics Research B, Vol. 2, 189-206, 2008.
    doi:10.2528/PIERB07111812

    8. Lie, J. P., B. P. Ng, and C. M. See, "Multiple UWB emitters DOA estimation employing time hopping spread spectrum," Progress In Electromagnetics Research, Vol. 78, 83-101, 2008.
    doi:10.2528/PIER07091303

    9. Jeong, Y. S. and J.-H. Lee, "Estimation of time delay using conventional beam forming-based algorithm for UWB systems," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 15, 2413-2420, 2007.
    doi:10.1163/156939307783134281

    10. Soliman, M. S., T. Morimoto, and Z.-I. Kawasaki, "Three-dimensional localization system for impulsive noise sources using ultra-wideband digital interferometer technique," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 4, 515-530, 2006.
    doi:10.1163/156939306776117027

    11. Win, M. Z. and R. A. Scholtz, "On the energy capture of ultrawide bandwidth signals in dense multipath environments," IEEE Commun. Lett., Vol. 2, No. 9, 245-247, 1998.
    doi:10.1109/4234.718491

    12. Romme, J. and K. Witrisal, "Transmitted-reference UWB systems using weighted autocorre-lation receivers," IEEE Trans. on Microwave Theory and Techniques, Vol. 54, No. 4, 1754-1761, 2006.
    doi:10.1109/TMTT.2006.872061

    13. Siwiak, K. and D. McKeown, Ultra-Wideband Radio Technology, John Wiley & Sons, 2004.

    14. Ramirez-Mireles, F., "On the performance of ultra wideband signals in gaussian noise and dense multipath," IEEE Trans. on Veh. Tech., Vol. 50, No. 4, 244-249, 2001.
    doi:10.1109/25.917932

    15. Taylor, J. D., Intruduction to Ultra-Wideband Systems, CRC Press, Ann Arbor, 1995.

    16. Taylor, J. D., Ultra-Wideband Radar Technology, CRC Press, New York, 2001.

    17. Chen, C.-H., C.-H. Liu, C.-C. Chiu, and T.-M. Hu, "Ultrawide band channel caculation by SBR/IMAG techniques for indoor communication," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 1, 41-51, 2006.
    doi:10.1163/156939306775777387

    18. Liu, Y. J., Y. R. Zhang, and W. Cao, "A novel approach to the refraction propagation characterisitcs of UWB signal waveforms," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 14, 1939-1950, 2007.
    doi:10.1163/156939307783152966

    19. Liu, X. F., B. Z. Wang, S. Xiao, and J. H. Deng, "Performance of impulse radio UWB communications based on time reversal technique," Progress In Electromagnetics Research, Vol. 79, 401-413, 2008.
    doi:10.2528/PIER07102205

    20. Chao, Y. L. and R. A. Scholtz, "Optimal and suboptimal receivers for ultra-wideband transmitted reference systems," Proc. GLOBECOM03, Vol. 2, 759-763, 2003.

    21. Xiao, S., J. Chen, F. Liu, and B. Z. Wang, "Spatial focusing characteristics of time reversal UWB pulse transmission with different antenna arrays," Progress In Electromagnetics Research B, Vol. 2, 223-232, 2008.
    doi:10.2528/PIERB07112203

    22. Chen, X., "Time-reversal operator for a small sphere in electromagnetic fields," Journal of Electromagnetic Waves and Applications, Vol. 21, 1219-1230, 2007.

    23. Xiao, S., J. Chen, B.-Z. Wang, and X.-F. Liu, "A numerical study on time-reversal electromagnetic wave for indoor ultrawideband signal transmission," Progress In Electromagnetics Research, Vol. 77, 329-342, 2007.
    doi:10.2528/PIER07082501

    24. Pausini, M., G. J. M. Janssen, and K. Witrisal, "Performance enhancement of differential UWB autocorrelation receivers under ISI," IEEE JSAC, Vol. 24, No. 4, 815-821, 2006.

    25. Witrisal, K., G. Leus, M. Pausini, and C. Krall, "Equivalent system model and equalization of differential impulse radio UWB systems," IEEE JSAC, Vol. 23, No. 9, 1851-1862, 2005.

    26. Khani, H. and P. Azmi, "Performance analysis of TH-UWB radio systems using proper waveform design in the presence of narrow-band interference," Wiley European Transactions on Telecommunications-ETT, Vol. 17, 111-123, 2006.
    doi:10.1002/ett.1043

    27. Revision of Part 15 of the commission's rules regarding ultra-wideband transmission systems, FIRST REPORT AND ORDER, Federal Communications Commission, 2002.

    28. Zasowski, T., F. Althaus, and A. Wittneben, "An energy efficient transmitted-reference scheme for ultra wideband communications," Proc. of IEEE JointUWBST&IWUWBS, 146-150, 2004.

    29. Franz, S. and U. Mitra, Integration interval optimization and performance analysis for UWB transmitted reference systems, IEEE International Workshop on Ultra Wideband Systems Joint with Conference on Ultrawideband Systems and Technologies, Joint UWBST & IWUWBS, 26-30, 2004.

    30. Romme, J. and K. Witrisal, "Oversampled weighted autocorrelation receivers for transmitted-reference UWB systems," IEEE 61st VTC 2005-Spring, Vol. 2, 1375-1380, 2005.

    31. Pausini, M. and G. J. M. Janssen, "Analysis and comparison of autocorrelation receivers for IR-UWB signals based on differential detection," ICASSP, 2004.

    32. Choi, J. and W. Stark, "Performance of ultra-wideband communications with suboptimal receivers in multipath channels," IEEE JSAC, Vol. 20, No. 9, 1754-1766, 2002.

    33. Quek, T. Q. S. and M. Z. Win, "Analysis of UWB transmitted-reference communication systems in dense multipath channels," IEEE JSAC, Vol. 23, No. 10, 1863-1874, 2005.

    34. Quek, T. Q. S. and M. Z. Win, "Ultrawide bandwidth transmitted-reference signaling," IEEE ICC, Vol. 27, 3409-3413, 2004.