Vol. 4
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2008-01-26
Asymptotic Iteration Method: a Powerful Approach for Analysis of Inhomogeneous Dielectric Slab Waveguides
By
Progress In Electromagnetics Research B, Vol. 4, 171-182, 2008
Abstract
In this paper a novel approach based on Asymptotic Iteration Method (AIM) is presented to solve analytically the light propagation through one-dimensional inhomogeneous slab waveguide. Practically implemented optical slab waveguides based on traditional techniques are usually inhomogeneous and numerical methods are used to obtain guided wave characteristics. In this work, we develop analytical method for modal analysis includes Eigen modes (electric and magnetic fields distribution) and Eigen values (guided wave vector) using AIM. The developed method is applied to some especial examples.
Citation
Ali Rostami, and Hossein Motavali, "Asymptotic Iteration Method: a Powerful Approach for Analysis of Inhomogeneous Dielectric Slab Waveguides," Progress In Electromagnetics Research B, Vol. 4, 171-182, 2008.
doi:10.2528/PIERB08011701
References

1. Motavali, H. and A. Rostami, "Exactly modal analysis of inhomogeneous slab waveguide using Nikiforov-Uvarov method," Journal of Electromagnetic Waves and Applications, Vol. 22, 681, 2008.
doi:10.1163/156939308784159507

2. Nikiforov, A. F. and V. B. Uvarov, Special Functions of Mathematical Physics, Birkhauser, Basel, 1988.

3. Egrifes, H. and R. Sever, "Bound state of the Dirac equation for the PT-symmetric generalized Hulthen potential by the Nikiforov-Uvarov method," Phys. Lett. A, Vol. 344, 117, 2005.
doi:10.1016/j.physleta.2005.06.061

4. Aktas, M. and R. Sever, "Exact supersymmetric solution of Schrodinger equation for central confining potentials by using the Nikiforov-Uvarov method," J. Mol. Struct. (Theochem), Vol. 710, 223, 2004.
doi:10.1016/j.theochem.2004.09.011

5. Berkdemir, C., A. Berkdemir, and R. Sever, "Systematical approach to the exact solutions of the Dirac equation for a deformed form of the Woods-Saxon potential," J. Phys. A: Math. Gen., Vol. 39, 13455, 2006.
doi:10.1088/0305-4470/39/43/005

6. Yasuk, F., A. Durmus, and I. Boztosun, "Exact analytical solution to the relativistic Klein-Gordon equation with non-central equal scalar and vector potentials," J. Math. Phys., Vol. 47, 082302, 2006.
doi:10.1063/1.2227258

7. Simsek, M. and H. Egrifes, "The Klein-Gordon equation for the generalized Hulthen potential in complex quantum mechanics," J. Phys. A: Math. Gen., Vol. 37, 4379, 2004.
doi:10.1088/0305-4470/37/15/007

8. Ciftci, H., R. L. Hall, and N. Saad, "Asymptotic iteration method for eigenvalue problems," J. Phys. A: Math. Gen., Vol. 36, 11807, 2003.
doi:10.1088/0305-4470/36/47/008

9. Ciftci, H., R. L. Hall, and N. Saad, "Perturbation theory in a framework of iteration methods," Phys. Lett. A, Vol. 346, 381, 2005.
doi:10.1016/j.physleta.2005.08.090

10. Bender, C. M. and Q. Wang, "A class of exactly-solvable eigenvalue problems," J. Phys. A, Vol. 34, 9835, 2001.
doi:10.1088/0305-4470/34/46/307

11. Bayrak, O. and I. Boztosun, "Arbitrary l-state solutions of the rotating Morse potential by the asymptotic iteration method," J. Phys. A: Math. Gen., Vol. 39, 6955, 2006.
doi:10.1016/j.theochem.2006.09.006

12. Bayrak, O and I. Boztosun, "Analytical solution to the Hulthen and Morse potentials by using the asymptotic iteration method," J. Mol. Struct. (Theochem), Vol. 802, 17, 2007.
doi:10.1142/S0218301306004788

13. Durmus, A., F. Yasuk, and I. Boztosun, "Exact analytical solution of the Kline-Gordon equation for the pionic atom by asymptotic iteration method," Int. J. Mod. Phys. E (IJMPE), Vol. 15, 1243, 2006.

14. Rostami, A. and S. K. Moayedi, "Exact solution for light propagation through inhomogeneous media," Indian J. Phys. B, Vol. 75, 357, 2001.
doi:10.1088/1464-4258/5/4/313

15. Rostami, A. and S. K. Moayedi, "TM mode in inhomogeneous slab waveguide as an exactly solvable oscillator-like Hamiltonian," J. Opt. A: Pure and Applied Optics, Vol. 5, 380, 2003.
doi:10.1140/epjb/e2003-00354-5

16. Moayedi, S. K. and A. Rostami, "PT-invariant Helmholtz optics and its applications to slab waveguides," Eur. Phys. J. B, Vol. 36, 359, 2003.

17. Rostami, A. and S. K. Moayedi, "Exactly modal analysis of inhomogeneous slab waveguides using similarity transformed harmonic-oscillator algebra," IL Nuovo Cimento B, Vol. 120, 285, 2005.

18. Moayedi, S. K. and A. Rostami, "Exact treatment of light in inhomogeneous slab waveguides using supersymmetric quantum mechanics," IL Nuovo Cimento B, Vol. 118, 729, 2003.
doi:10.2528/PIER07071905

19. Liu, S. H., C. H. Liang, W. Ding, L. Chen, and W. T. Pan, "Electromagnetic wave propagation through a slab waveguide of uniaxially anisotropic dispersive metamaterial," Progress In Electromagnetics Research, Vol. 76, 467-475, 2007.
doi:10.2528/PIER06021802

20. Wang, Z. J. and J. F. Dong, "Analysis of guided modes in asymmetric left-handed slab waveguides," Progress In Electromagnetics Research, Vol. 62, 203-215, 2006.
doi:10.2528/PIER06071101

21. Singh, V., Y. Prajapati, and J. P. Saini, "Modal analysis and dispersion curves of a new unconventional Bragg waveguide using a very simple method," Progress In Electromagnetics Research, Vol. 64, 191-204, 2006.
doi:10.2528/PIER05110602

22. Attiya, A. M. and A. A. Kishk, "Modal analysis of a two-dimensional dielectric grating slab excited by an obliquely incident plane wave," Progress In Electromagnetics Research, Vol. 60, 221-243, 2006.
doi:10.2528/PIER03081801

23. Hu, F. G., C. F. Wang, Y. Xu, and Y. B. Gan, "Modal method analysis of multilayered coated circular waveguide using a modified characteristic equation," Progress In Electromagnetics Research, Vol. 45, 243-262, 2004.
doi:10.2528/PIER99052501

24. Liu, S., L. W. Li, M. S. Leong, and T. S. Yeo, "Rectangular conducting waveguide filled with uniaxial anisotropic media: A modal analysis and dyadic Green’s function," Progress In Electromagnetics Research, Vol. 25, 111-129, 2000.
doi:10.1016/j.cplett.2005.10.039

25. Berkdemir, A., C. Berkdemir, and J. Han, "Bound state solutions of the Schr¨odinger equation for modified Kratzer’s molecular potential," Chem. Phys. Lett., Vol. 417, 2006.
doi:10.2528/PIERB07121303

26. Hatamzadeh-Varmazyar, S. and M. Naser-Moghadasi, "New numerical method for determining the scattered electromagnetic fields from thin wires," Progress In Electromagnetics Research B, Vol. 3, 207-218, 2008.
doi:10.2528/PIER07122601

27. Banai, A. and A. Hashemi, "A hybrid multimode contour integral method for analysis of the H-plane waveguide discontinuties," Progress In Electromagnetics Research, Vol. 81, 167-182, 2008.
doi:10.2528/PIER08010303

28. Ho, M., F.-S. Lai, S.-W. Tan, and P.-W. Chen, "Numerical simulation of propagation of EM pulse through lossless non-uniform dielectric slab using characteristic-based method," Progress In Electromagnetics Research, Vol. 81, 197-212, 2008.
doi:10.2528/PIER07103105

29. Collino, F., F. Millot, and S. Pernet, "Boundary-integral methods for iterative solution of scattering problems with variable impedance surface condition," Progress In Electromagnetics Research, Vol. 80, 1-28, 2008.
doi:10.2528/PIER07100802

30. Carpentieri, B., "Fast iterative solution Methods in electromagnetic scattering," Progress In Electromagnetics Research, Vol. 79, 151-178, 2008.
doi:10.2528/PIER06071101

31. Singh, V., Y. Prajapati, and J. P. Saini, "Modal analysis and dispersion curves of a new unconventional Bragg waveguide using a very simple method," Progress In Electromagnetics Research, Vol. 64, 191-204, 2006.
doi:10.2528/PIER07030802

32. Khalaj-Amirhosseini, M., "Analysis of lossy inhomogeneous planar layers using equivalent sources method," Progress In Electromagnetics Research, Vol. 72, 61-73, 2007.
doi:10.2528/PIER07030806

33. Berginc, G. and C. Bourrely, "The small-slope approximation method applied to a three-dimensional slab with rough boundaries," Progress In Electromagnetics Research, Vol. 73, 131-211, 2007.
doi:10.2528/PIERB07103002

34. Kazemi, S., H. R. Hassani, G. Dadashzadeh, and F. Geran, "Performance improvement in amplitude synthesis of unequally spaced array using least mean square method," Progress In Electromagnetics Research B, Vol. 1, 135-145, 2008.
doi:10.2528/PIERL07111902

35. Samuel, E. P. and D. S. Patil, "Analysis of wavefunction distribution in quantum well biased laser diode using transfer matrix method," Progress In Electromagnetics Research Letters, Vol. 1, 119-128, 2008.