Vol. 2
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2007-11-27
Direction of Arrival and State of Polarization Estimation Using Radial Basis Function Neural Network (Rbfnn)
By
Progress In Electromagnetics Research B, Vol. 2, 137-150, 2008
Abstract
A Neural Network architecture is applied to the problem of Direction of Arrival (DOA) and state of polarization estimation using a uniform circular cross and tri-crossed-dipoles antenna array. A three layer Radial Basis Function Network (RBFN) is trained with input output pairs. The network is then capable of estimating DOA not included in the training set through generalization and the corresponding state of polarization. This approach reduces the extensive computations required by conventional super resolution algorithms such as MUSIC and is easier to implement in real-time applications. The results suggest that the performance of the RBFNN method approaches the exact values. In real time, fast convergence rates of neural networks will allow the array to track mobile sources.
Citation
Saber Zainud-Deen, Hend Abd El-Azem Malhat, Kamal Awadalla, and E. El-Hadad, "Direction of Arrival and State of Polarization Estimation Using Radial Basis Function Neural Network (Rbfnn)," Progress In Electromagnetics Research B, Vol. 2, 137-150, 2008.
doi:10.2528/PIERB07111801
References

1. Xu, X. L. and K. M. Buckley, "Bias and variance of direction-of-arrival estimate from MUSIC, MIN-NORM, and FINE," IEEE Trans. Signal Processing, Vol. 42, 1812-1816, 1994.
doi:10.1109/78.298288

2. Kautz, G. M. and M. D. Zoltowski, "Performance of MUSIC employing conjugate symmetric beamformers," IEEE Trans. Signal Processing, Vol. 43, 737-748, 1995.
doi:10.1109/78.370628

3. Rao, B. D. and K. V. S. Hari, "Performance analysis of ESPRIT and TAM in determining the direction of arrival of plane waves in noise," IEEE Trans. Acoust., Speech, Signal Processing, Vol. 36, 1990-1995, 1989.
doi:10.1109/29.45548

4. Vigneshwaran, S., N. Sundarajan, and P. Saratchandran, "Directional of arrival (DOA) estimation under array sensor faliures using minimal resources allocation neural network," IEEE Trans. Antennas Propagat., Vol. 55, No. 2, 334-343, February 2007.
doi:10.1109/TAP.2006.889794

5. Haykin, S., Neural Networks: A Comprehensive Foundation, Prentice Hall, New York, 1999.

6. Chang, P. R., W. H. Yang, and K. K. Chan, "A neural network approach to MVDR beamforming problem," IEEE Trans. Antennas Propagat., Vol. 40, 313-322, Mar. 1992.
doi:10.1109/8.135474

7. Christodoulou, C. and M. Georgiopoulos, Applications of Neural Networks in Electromagnetics, Artech House, Norwood, Massachusetts, 2001.

8. Mohamed, M. A., E. A. Soliman, and M. A. El-Gamal, "Optimization and characterization of electromagnetically coupled patch antennas using RBF neural networks," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 8, 1101-1114, 2006.
doi:10.1163/156939306776930240

9. Guney, K., C. Yildiz, S. Kaya, and M. Turkmen, "Artificial neural networks for calculating the characteristics impedance of air-suspended trapezoidal and rectangular-shaped microstrip lines," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 9, 1161-1174, 2006.
doi:10.1163/156939306777442917

10. Ayestaran, R. G., F. Las-Heras, and J. A. Martinez, "Non uniform-antenna array synthesis using neural networks," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 8, 1001-1011, 2007.

11. Southall, H. L., J. A. Simmers, and T. H. O'Donnell, "Direction finding in phased arrays with a neural network beamformer," IEEE Trans. Antennas Propagat., Vol. 43, 1369-1375, Dec. 1995.
doi:10.1109/8.475924

12. El Zooghby, A. H., C. G. Christodoulou, and M. Georgiopoulos, "Performance of radial basis function networks for direction of arrival estimation with antenna arrays," IEEE Trans. Antennas Propagat., Vol. 45, 1611-1617, Nov. 1997.
doi:10.1109/8.650072

13. El Zooghby, A. H., C. G. Christodoulou, and M. Georgiopoulos, "Adaptive interference cancellation in circular arrays with radial basis function neural networks," IEEE International Symposium on Antennas andPr op. Digest, 203-206, 1998.

14. Gupta, I. J. and A. A. Ksienski, "Effect of mutual coupling on the performance of adaptive array," IEEE Trans. Antennas Propagat., Vol. 31, 785-791, Sept. 1983.
doi:10.1109/TAP.1983.1143128

15. Adve, R. S. and T. K. Sarkar, "Compensation for the effects of mutual coupling on direct data domain algorithms," IEEE Trans. Antennas Propagat., Vol. 48, 86-94, Jan. 2000.
doi:10.1109/8.827389

16. Lau, C. K. E. and R. S. Adve, "Minimum-norm mutual coupling compensation with applications in direction of arrival estimation," IEEE Trans. Antennas Propagat., Vol. 52, No. 8, 2034-2040, Aug. 2004.
doi:10.1109/TAP.2004.832511

17. Canning, F. X., "Direct solution of the EFIE with half the computation," IEEE Trans. Antennas Propagat., Vol. 39, 118-119, Jan. 1991.
doi:10.1109/8.64447

18. Virga, K. L. and Y. Rahmat-Samii, "Efficient wide-band evaluation of mobile communications antennas using [Z] or [Y] matrix interpolation with the method of moments," IEEE Trans. Antennas Propagat., Vol. 47, 65-76, Jan. 1999.
doi:10.1109/8.752990

19. Wax, M. and T. Kailath, "Detection of signals by information theoretic criteria," IEEE Trans. Acoust., Speech, Signal Processing, Vol. 33, 387-392, 1985.
doi:10.1109/TASSP.1985.1164557

20. Balanis, C. A., Antenna Theory: Analysis and Design, Third Ed., Wiley, New York, 2005.

21. Lundback, J. and S. Nordebo, "On polarization estimation using tri-crossed-dipoles arrays," IEEE International Symposium on Antennas andPr op. Digest, 1-4, 2003.