ELECTROMAGNETIC WAVES PIER 25

Progress
In
Electromagnetics
Research

All rights reserved. No part of this publication may be reproduced. Request for permission should be addressed to the Publisher.

© 2000 EMW Publishing

All inquiries regarding copyrighted material from this publication, manuscript submission instructions, and subscription orders and price information should be directed to: EMW Publishing, P. O. Box 425517, Kendall Square, Cambridge, Massachusetts 02142, USA. FAX: 1-617-354-9597. For up-to-date information, visit web site at http://www.emwave.com

This publication is printed on acid-free paper.

ISSN 1070-4698

Manufactured in the United States of America

ELECTROMAGNETIC WAVES PIER 25

Progress
In
Electromagnetics
Research

Chief Editor: J. A. Kong

EMW Publishing Cambridge, Massachusetts, USA

CONTENTS

Chapter	1	TVFEM ANALYSIS OF PERIODIC STRUCTUR FOR RADIATION AND SCATTERING Y. Zhu and R. Lee	ES
	1. 2. 3. 4. 5. 6. 7.	Introduction General Formulation Discretization and Basis Functions Imposition of the Periodic Boundary Condition Upper and Bottom Boundary Truncation: PML Numerical Results Summary and Discussion References	1 3 5 8 11 12 20 21
Chapter	2	COUPLED-MODE ANALYSIS OF A GATING-ASSISTED DIRECTIONAL COUPLER USING SINGULAR PERTURBATION TECHNIQUE K. Watanabe, J. Ishihara, and K. Yasumoto	
	1. 2. 3. 4.	Formulation	23 25 34 36 36
Chapter	3	EXTINCTION BEHAVIOR OF DRY SNOW AT MICROWAVE RANGE UP TO 90 GHZ BY USING STRONG FLUCTUATION THEORY H. Wang, J. Pulliainen, and M. Hallikainen	NG
	1. 2.	Introduction Extinction Coefficients Using Phase Matrix in	39
	3.	Strong Fluctuation Theory Hallikainen et al.'s Extinction Coefficient	40
	4.	Model Comparison of Calculated Extinction	44
		Coefficients with Data	44
	5.	Conclusions	46
		Appendices	46
		References	50

Chapter 4	EFFICIENT FAULTY ELEMENT DIAGNOST LARGE ANTENNA ARRAYS BY DISCRETE FIELD NEURAL NETS G. Castaldi, V. Pierro, and I. M. Pinto	ICS OF MEAN
1. 2. 3. 4. 5. 6. 7.	Introduction Antenna Array Diagnostics from Linear and Non-Linear Measurements Neural Network Properties Discrete Implementation Implementation Hints Numerical Results Conclusions - Hints for Future Research Appendices References	53 55 57 62 63 65 69 70 75
Chapter 5	THE USE OF TANSFINITE ELEMENTS IN T METHODS OF MOMENTS APPLIED TO ELECTROMAGNETIC SCATTERING BY DIELECTRIC CYLINDERS Ph. De Doncker	HE
1. 2. 3. 4.	Introduction The Transfinite Elements The Results Conclusion Appendix References	77 80 85 92 92
Chapter 6	COUPLED-MODE ANALYSIS OF COUPLED MICROSTRIP TRANSMISSION LINES USINGULAR PERTURBATION TECHNIQUE K. Watanabe and K. Yasumoto	NG A
1. 2. 3. 4. 5.	Introduction Formulation of the Problem Coupled-Mode Equations Numerical Examples Concluding Remarks Appendix References	95 96 99 104 108 109

Chapter 7	RECTANGULAR CONDUCTING WAVEG FILLED WITH UNIAXIAL ANISOTROPIC A MODAL ANALYSIS AND DYADIC GRE FUNCTION S. Liu, L.W. Li, M. S. Leong, and T. S. Yeo	MEDIA: EN'S
1. 2. 3. 4. 5. 6.	Introduction Basic Formulation of the Problem Fields in Source-free Rectangular Waveguides Dyadic Green's Functions Applications of Dyadic Green's Functions Conclusions References	111 113 114 117 125 126 127
Chapter 8	SCATTERING FROM AXISYMMETRIC SCATTERERS: A HYBRID METHOD OF SMAUE'S EQUATION J. G. Fikioris and A. N. Magoulas	OLVING
1. 2. 3. 4.	Introduction Evaluation of the Surface "Patch" Integrals Application to Specific Scatterers Conclusions References	131 135 143 159 164
Chapter 9	EVALUATION OF BISTATIC FAR-FIELD QUANTITIES FROM NEAR-FIELD MEASUREMENTS J. L. Leou and H. J. Li	
1. 2. 3. 4. 5.	Introduction Formulation of the Integral Equations Numerical Solution of Integral Equation Results and Observations Conclusions References	167 169 172 177 187 187

Chapter 10	A STUDY OF FRESENEL SCATTERED FIELD NON-SPHERICAL DISCRETE SCATTERERS H. T. Ewe and H. T. Chuah	FOR
1. 2. 3. 4. 5.	Introduction Formulation Theoretical Analysis Comparisons with Measurement Data Conclusion Appendix References	189 191 204 213 217 217 221
Chapter 11	FRACTIONAL DUAL SOLUTIONS AND CORRESPONDING SOURCES Q. A. Naqvi and A. A. Rizvi	
1. 2. 3. 4. 5.	Introduction TEM Plan Wave Propagating in An Arbitrary Direction Spectrum of TEM Plane Waves Source Distribution Intermediate Fractional Dual Solutions to the Helmhotz's Equation References	223 226 230 231 234 237
Chapter 12	THE NEAR- AND FAR-ZONE FIELDS OF PER SPHERICAL ARRAYS OF DIPOLE ANTENNA SPHERICAL CHIRAL SUBSTRATES WY. Yin, LW. Li, and MS. Leong	RIODIC AS ON
1. 2. 3. 4. 5.	Introduction Geometries of the Problem Field Distributions Numerical Results Conclusions Appendices References	239 240 242 252 254 255 258

Chapter 13	A QUEST FOR SYSTEMATIC CONSTITUTIVE FORMULATIONS FOR GENERAL FIELD AND WAVE SYSTEMS BASED ON THE VOLTERRA DIFFERENTIAL OPERATORS D. Censor)
1. 2. 3. 4. 5. 6.	Introduction Linear Homogeneous Media Linear Inhomogeneous Media Nonlinear Homogeneous Media Nonlinear Inhomogeneous Media Special Relativity and Minkowski's Constitutive Theory Summary and Concluding Remarks Reference	261 263 269 275 277 279 282 283
Chapter 14	ELECTROMAGNETIC INTERACTION OF PARALLEL ARRAYS OF DIPOLE SCATTERERS V. Yatsenko, S. Maslovski, and S. Tretyakov	
1. 2. 3. 4. 5. 6.	Introduction Calculation of Local Field Approximate Analytical Formula Numerical Examples Arrays of Magnetic Dipole Scatterers Conclusions Appendix References	285 287 293 293 301 304 305 307
Chapter 15	CONCISE SPECTRAL FORMALISM IN THE ELECTROMAGNETICS OF BIANISOTROPIC MEDIA E. L. Tan and S. Y. Tan	
1. 2. 3. 4. 5.	Introduction Source-incorporated 4 × 4 Matrix Formalism Dyadic Green's Functions Reciprocity Theorems Conclusion References	309 311 316 321 327 328