ELECTROMAGNETIC WAVES PIER 25 Progress In Electromagnetics Research All rights reserved. No part of this publication may be reproduced. Request for permission should be addressed to the Publisher. ## © 2000 EMW Publishing All inquiries regarding copyrighted material from this publication, manuscript submission instructions, and subscription orders and price information should be directed to: EMW Publishing, P. O. Box 425517, Kendall Square, Cambridge, Massachusetts 02142, USA. FAX: 1-617-354-9597. For up-to-date information, visit web site at http://www.emwave.com This publication is printed on acid-free paper. ISSN 1070-4698 Manufactured in the United States of America ## ELECTROMAGNETIC WAVES PIER 25 Progress In Electromagnetics Research Chief Editor: J. A. Kong EMW Publishing Cambridge, Massachusetts, USA ## **CONTENTS** | Chapter | 1 | TVFEM ANALYSIS OF PERIODIC STRUCTUR FOR RADIATION AND SCATTERING Y. Zhu and R. Lee | ES | |---------|--|---|--| | | 1.
2.
3.
4.
5.
6.
7. | Introduction General Formulation Discretization and Basis Functions Imposition of the Periodic Boundary Condition Upper and Bottom Boundary Truncation: PML Numerical Results Summary and Discussion References | 1
3
5
8
11
12
20
21 | | Chapter | 2 | COUPLED-MODE ANALYSIS OF A GATING-ASSISTED DIRECTIONAL COUPLER USING SINGULAR PERTURBATION TECHNIQUE K. Watanabe, J. Ishihara, and K. Yasumoto | | | | 1.
2.
3.
4. | Formulation | 23
25
34
36
36 | | Chapter | 3 | EXTINCTION BEHAVIOR OF DRY SNOW AT MICROWAVE RANGE UP TO 90 GHZ BY USING STRONG FLUCTUATION THEORY H. Wang, J. Pulliainen, and M. Hallikainen | NG | | | 1.
2. | Introduction Extinction Coefficients Using Phase Matrix in | 39 | | | 3. | Strong Fluctuation Theory Hallikainen et al.'s Extinction Coefficient | 40 | | | 4. | Model Comparison of Calculated Extinction | 44 | | | | Coefficients with Data | 44 | | | 5. | Conclusions | 46 | | | | Appendices | 46 | | | | References | 50 | | Chapter 4 | EFFICIENT FAULTY ELEMENT DIAGNOST
LARGE ANTENNA ARRAYS BY DISCRETE
FIELD NEURAL NETS
G. Castaldi, V. Pierro, and I. M. Pinto | ICS OF
MEAN | |--|---|--| | 1.
2.
3.
4.
5.
6.
7. | Introduction Antenna Array Diagnostics from Linear and Non-Linear Measurements Neural Network Properties Discrete Implementation Implementation Hints Numerical Results Conclusions - Hints for Future Research Appendices References | 53
55
57
62
63
65
69
70
75 | | Chapter 5 | THE USE OF TANSFINITE ELEMENTS IN T
METHODS OF MOMENTS APPLIED TO
ELECTROMAGNETIC SCATTERING BY
DIELECTRIC CYLINDERS
Ph. De Doncker | HE | | 1.
2.
3.
4. | Introduction The Transfinite Elements The Results Conclusion Appendix References | 77
80
85
92
92 | | Chapter 6 | COUPLED-MODE ANALYSIS OF COUPLED MICROSTRIP TRANSMISSION LINES USINGULAR PERTURBATION TECHNIQUE K. Watanabe and K. Yasumoto | NG A | | 1.
2.
3.
4.
5. | Introduction Formulation of the Problem Coupled-Mode Equations Numerical Examples Concluding Remarks Appendix References | 95
96
99
104
108
109 | | Chapter 7 | RECTANGULAR CONDUCTING WAVEG
FILLED WITH UNIAXIAL ANISOTROPIC
A MODAL ANALYSIS AND DYADIC GRE
FUNCTION
S. Liu, L.W. Li, M. S. Leong, and T. S. Yeo | MEDIA:
EN'S | |----------------------------------|---|---| | 1.
2.
3.
4.
5.
6. | Introduction Basic Formulation of the Problem Fields in Source-free Rectangular Waveguides Dyadic Green's Functions Applications of Dyadic Green's Functions Conclusions References | 111
113
114
117
125
126
127 | | Chapter 8 | SCATTERING FROM AXISYMMETRIC SCATTERERS: A HYBRID METHOD OF SMAUE'S EQUATION J. G. Fikioris and A. N. Magoulas | OLVING | | 1.
2.
3.
4. | Introduction Evaluation of the Surface "Patch" Integrals Application to Specific Scatterers Conclusions References | 131
135
143
159
164 | | Chapter 9 | EVALUATION OF BISTATIC FAR-FIELD
QUANTITIES FROM NEAR-FIELD
MEASUREMENTS
J. L. Leou and H. J. Li | | | 1.
2.
3.
4.
5. | Introduction Formulation of the Integral Equations Numerical Solution of Integral Equation Results and Observations Conclusions References | 167
169
172
177
187
187 | | Chapter 10 | A STUDY OF FRESENEL SCATTERED FIELD NON-SPHERICAL DISCRETE SCATTERERS H. T. Ewe and H. T. Chuah | FOR | |----------------------------|---|---| | 1.
2.
3.
4.
5. | Introduction Formulation Theoretical Analysis Comparisons with Measurement Data Conclusion Appendix References | 189
191
204
213
217
217
221 | | Chapter 11 | FRACTIONAL DUAL SOLUTIONS AND CORRESPONDING SOURCES Q. A. Naqvi and A. A. Rizvi | | | 1.
2.
3.
4.
5. | Introduction TEM Plan Wave Propagating in An Arbitrary Direction Spectrum of TEM Plane Waves Source Distribution Intermediate Fractional Dual Solutions to the Helmhotz's Equation References | 223
226
230
231
234
237 | | Chapter 12 | THE NEAR- AND FAR-ZONE FIELDS OF PER SPHERICAL ARRAYS OF DIPOLE ANTENNA SPHERICAL CHIRAL SUBSTRATES WY. Yin, LW. Li, and MS. Leong | RIODIC
AS ON | | 1.
2.
3.
4.
5. | Introduction Geometries of the Problem Field Distributions Numerical Results Conclusions Appendices References | 239
240
242
252
254
255
258 | | Chapter 13 | A QUEST FOR SYSTEMATIC CONSTITUTIVE
FORMULATIONS FOR GENERAL FIELD AND
WAVE SYSTEMS BASED ON THE VOLTERRA
DIFFERENTIAL OPERATORS
D. Censor |) | |----------------------------------|--|--| | 1.
2.
3.
4.
5.
6. | Introduction Linear Homogeneous Media Linear Inhomogeneous Media Nonlinear Homogeneous Media Nonlinear Inhomogeneous Media Special Relativity and Minkowski's Constitutive Theory Summary and Concluding Remarks Reference | 261
263
269
275
277
279
282
283 | | Chapter 14 | ELECTROMAGNETIC INTERACTION OF PARALLEL ARRAYS OF DIPOLE SCATTERERS V. Yatsenko, S. Maslovski, and S. Tretyakov | | | 1.
2.
3.
4.
5.
6. | Introduction Calculation of Local Field Approximate Analytical Formula Numerical Examples Arrays of Magnetic Dipole Scatterers Conclusions Appendix References | 285
287
293
293
301
304
305
307 | | Chapter 15 | CONCISE SPECTRAL FORMALISM IN THE ELECTROMAGNETICS OF BIANISOTROPIC MEDIA E. L. Tan and S. Y. Tan | | | 1.
2.
3.
4.
5. | Introduction Source-incorporated 4 × 4 Matrix Formalism Dyadic Green's Functions Reciprocity Theorems Conclusion References | 309
311
316
321
327
328 |