Vol. 21

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Fractional Solutions for the Helmholtz's Equation in a Multilayered Geometry

By Qaisar Naqvi and Azhar Abbas Rizvi
Progress In Electromagnetics Research, Vol. 21, 319-335, 1999
doi:10.2528/PIER98100501

Citation


Qaisar Naqvi and Azhar Abbas Rizvi, "Fractional Solutions for the Helmholtz's Equation in a Multilayered Geometry," Progress In Electromagnetics Research, Vol. 21, 319-335, 1999.
doi:10.2528/PIER98100501
http://jpier.org/PIER/pier.php?paper=9810051

References


    1. Engheta, N., "Use of fractional integration to propose some “fractional” solutions for the scalar Helmholtz equation," Jin A. Kong (ed.), Progress in Electromagnetics Research (PIER), Monograph Series Volume 12, 107-132, 1996.

    2. Engheta, N., "On the role of fractional calculus in electromagnetic theory," IEEE Antenna and Propagation Mag., Vol. 39, 35-46, 1997.
    doi:10.1109/74.632994

    3. Oldham, K. B. and J. Spanier, The Fractional Calculus, Academic Press, New York, 1974.

    4. Naqvi, Q. A., Scattering of ElectromagneticWaves from A Buried Cylinder, Ph.D. Thesis, Quaid-i-Azam University, Islamabad, Pakistan, 1997.

    5. Naqvi, Q. A. and A. A. Rizvi, "Low contrast circular cylinder buried in a grounded dielectric layer," Journal of Electromagnetic Waves and Applications, Vol. 12, No. 11, 1527-1536, 1998.
    doi:10.1163/156939398X00458

    6. Mughal, M. J., Radiation by Line Sources in Buried and Covered Regions , M.Phil. Thesis, Quaid-i-Azam University, Islamabad, Pakistan, 1996.

    7. Bender, C. M. and S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers, McGraw-Hill, New York, 1978.