Vol. 21

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Application of Multi-Domain Gdq Method to Analysis of Waveguides with Rectangular Boundaries

By
Progress In Electromagnetics Research, Vol. 21, 1-19, 1999
doi:10.2528/PIER98052601

Citation

 (See works that cites this article)
, "Application of Multi-Domain Gdq Method to Analysis of Waveguides with Rectangular Boundaries," Progress In Electromagnetics Research, Vol. 21, 1-19, 1999.
doi:10.2528/PIER98052601
http://jpier.org/PIER/pier.php?paper=9805261

References


    1. Ng, F. L., "Tabulation of methodsfor the numerical solution of the hollow waveguide problem," IEEE Trans. Microwave Theory Tech., Vol. MTT–22, 322-329, 1974.

    2. Swaminathan, M., E. Arvas, T. K. Sarkar, and A. R. Djordjevic, "Computation of cutoff wavenumbersof TE and TM modes in waveguides of arbitrary cross sections using a surface integral formulation," IEEE Trans. Microwave Theory Tech., Vol. MTT–38, 154-159, 1990.
    doi:10.1109/22.46425

    3. Sarkar, T. K., K. Athar, E. Arvas, M. Manela, and R. Lade, "Computation of the propagation characteristics of TE and TM modesin arbitrarily shaped hollow waveguidesutilizing the conjugate gradient method," J. Electromagn. Waves Appl., Vol. 3, 143-165, 1989.

    4. Guan, J. M. and C. C. Su, "Analysis of metallic waveguides with rectangular boundariesb y using the finite-difference method and the simultaneous iteration with the Chebyshev acceleration," IEEE Trans. Microwave Theory Tech., Vol. MTT–43, 374-382, 1995.
    doi:10.1109/22.348098

    5. Shu, C., "Generalized differential-integral quadrature and application to the simulation of incompressible viscous flows including parallel computation," Ph.D. Thesis, University of Glasgow, U. K., 1991.

    6. Bellman, R., B. G. Kashef, and J. Casti, "Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations," J. Comput. Phys., Vol. 10, 40-52, 1972.
    doi:10.1016/0021-9991(72)90089-7

    7. Shu, C. and B. E. Richards, "Application of generalized differential quadrature to solve two-dimensional incompressible Navier-Stokesequations," Int. J. Numer. Methods Fluids, Vol. 15, 791-798, 1992.
    doi:10.1002/fld.1650150704

    8. Shu, C., Y. T. Chew, and B. E. Richards, "Generalized differential-integral quadrature and their application to solve boundary layer equations," Int. J. Numer. Methods Fluids, Vol. 21, 723-733, 1995.
    doi:10.1002/fld.1650210903

    9. Du, H., K. M. Liew, and M. K. Lim, "Generalized differential quadrature method for buckling analysis," Journal of Engineering, Mechanics, Vol. 122, 95-100, 1996.
    doi:10.1061/(ASCE)0733-9399(1996)122:2(95)

    10. Shu, C., "Free vibration analysis of composite laminated conical shells by generalized differential quadrature," J. Sound Vibr., Vol. 194, 587-604, 1996.
    doi:10.1006/jsvi.1996.0379

    11. Montgomery, J. P., "On the complete eigenvalue solution of ridged waveguide," IEEE Trans. Microwave Theory Tech., Vol. MTT–19, 547-555, 1971.
    doi:10.1109/TMTT.1971.1127572

    12. Utsumi, Y., "Variational analysis of ridged waveguide mode," IEEE Trans. Microwave Theory Tech., Vol. MTT–33, 111-120, 1985.
    doi:10.1109/TMTT.1985.1132958

    13. Israel, M. and R. Miniowitz, "An efficient finite element method for nonconvex waveguide based on hermitian polynomials," IEEE Trans. Microwave Theory Tech., Vol. MTT-35, 1019-1026, 1987.
    doi:10.1109/TMTT.1987.1133801