Vol. 20

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Analytical Method for Solving the One-Dimensional Wave Equation with Moving Boundary

By L. Gaffour
Progress In Electromagnetics Research, Vol. 20, 63-73, 1998
doi:10.2528/PIER98021900

Citation

 (See works that cites this article)
L. Gaffour, "Analytical Method for Solving the One-Dimensional Wave Equation with Moving Boundary," Progress In Electromagnetics Research, Vol. 20, 63-73, 1998.
doi:10.2528/PIER98021900
http://jpier.org/PIER/pier.php?paper=980219

References


    1. Gaffour, L. and G. Grigorian, "Circular waveguide of moving boundary," J.E.W.A., Vol. 10, No. 1, 97-108, 1996.

    2. Balazs, W. L., "On the solution of the wave equation with moving boundaries," J. Math. Analis. Appl., Vol. 3, No. 9, 472, 1961.
    doi:10.1016/0022-247X(61)90071-3

    3. Gibsen, R. E., "A one dimensional consolidation problem with a moving boundary," Quart. Appl. Math., Vol. 18, No. 2, 1960.

    4. Routkevich, I. M., "Electromagnetic field in the checking volume," P.M.T.F., Vol. 3, 552, 1967.

    5. Baranov, R. L. and Y. M. Shirokov, "Electromagnetic field in optical resonator with a movable mirror," Sov. Phys. J.E.T.P., Vol. 26, 1199, 1968.

    6. Bickley, W. B., Some Problems Concerning Differential Equations Made Non-linear by Unknown on Moving Boundary, Acad. Press, New-York, London, 1964.

    7. Barsukov, K. A. and Grigorian, "The theory of waveguide with moving boundaries," Radio. Phyi., Vol. 19, 174, 1976.

    8. Cooper, J., "Long time behavior and energy growth for electromagnetic waves reflected by a moving boundary," IEEE Trans. Antennas Propagation, Vol. 41, No. 10, October 1993.

    9. Wilhelm, H. E. and M. A. Hasan, "Transformation method for electromagnetic wave problem with moving boundary conditions," Archiv fur Electrotechnik, Vol. 72, 165-173, 1989.
    doi:10.1007/BF01577515

    10. Cooper, J., "Scattering of electromagnetic field by a moving boundary," IEEE Trans. Antennas Propagation, Vol. AP. 28, 791-795, November 1980.

    11. Gaffour, L., "W.K.B. Method for analyzing the electromagnetic field in a circular waveguide with moving boundary," J.E.W.A., Vol. 10, No. 6, 757-764, 1996.

    12. Cooper, J. and W. Strauss, "Scattering theory for time periodic systems with application to electromagnetic," Indiana Univ. Math. J., Vol. 34, 33-83, 1985.
    doi:10.1512/iumj.1985.34.34003

    13. Wilhelm, H. E., "Hyperbolic initial-boundary-value problem for magnetic flux compression by plane liners," App. Physic., Vol. 31 B, 173, 1983.
    doi:10.1007/BF00688839

    14. Wilhelm, H. E., "Hyperbolic theory of electromagnetic cumulation in cylindrical linear implosion," Phys. Rev., Vol. A27, 1515, 1983.
    doi:10.1103/PhysRevA.27.1515

    15. Van Bladel, J. and D. De Zutter, "Reflexion from linear vibrating objects: Plane mirror at an oblique incidence," IEEE.Trans. on Antennas and Propagation, Vol. AP. 29, No. 4, 629-637, Jul. 1981.
    doi:10.1109/TAP.1981.1142645

    16. Wilhelm, H. E., "Covariant electromagnetic theory for initial frame with substratum flow," J. Appl. Phys., Vol. 56, 1285, 1984.
    doi:10.1063/1.334133

    17. Wilie, C. R. and L. C. Barrett, Advanced Engineering Mathematics, McGraw-Hill, International edition, 1989.

    18. Tikhonov, A. and B. Samarsky, "Equations of the Physic-Mathematic," Ed. Naouka. Moskow, 1966.

    19. Smirnov, V., Superior Mathematics, T.2, Ed. Mir. Moskow, 1969.

    20. Morse, P. and H. Feshbakh, Theoretical Physics, Part 1, 1223.