Vol. 20

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

A Comparision Among Some Local Approximation in One-Dimensional Profile Reconstruction

By J. A. K. Adopley, Donald Dudley, and Tarek Habashy
Progress In Electromagnetics Research, Vol. 20, 1-24, 1998
doi:10.2528/PIER98020100

Citation


J. A. K. Adopley, Donald Dudley, and Tarek Habashy, "A Comparision Among Some Local Approximation in One-Dimensional Profile Reconstruction," Progress In Electromagnetics Research, Vol. 20, 1-24, 1998.
doi:10.2528/PIER98020100
http://jpier.org/PIER/pier.php?paper=980201

References


    1. Butler, C., "General analysis of a narrow slot in a conducting screen between half-spaces of different electromagnetic properties," Radio Sci., Vol. 22, No. 7, 1149-1154, 1987.
    doi:10.1029/RS022i007p01149

    2. Bleistein, N. and J. K. Cohen, "Nonuniqueness in inverse source problems in acoustics and electromagnetics," Journal of Mathematical Physics, Vol. 18, No. 2, 194-201, February 1977.
    doi:10.1063/1.523256

    3. Devaney, A. J., "Nonuniqueness in the inverse scattering problem," Journal of Mathematical Physics, Vol. 19, No. 7, 1526-31, July 1978.
    doi:10.1063/1.523860

    4. Devaney, V. and E. Wolf, "Radiating and nonradiating classical currents distributions and the fields they generate," Physical Review D , Vol. 8, No. 4, 1044-47, August 1973.
    doi:10.1103/PhysRevD.8.1044

    5. Porter, R. P. and A. J. Devaney, "Holography and the inverse source problem," J. Opt. Soc. Am., Vol. 72, 327-330, 1982.
    doi:10.1364/JOSA.72.000327

    6. Stone, R., "review and examination of results on uniqueness in inverse problems," Radio Science, Vol. 22, No. 6, 1026-1030, November 1987.
    doi:10.1029/RS022i006p01026

    7. Parker, R. L., "Understanding inverse theory," Ann. Rev. Earth Planet. Sci., Vol. 5, 35-64, 1977.
    doi:10.1146/annurev.ea.05.050177.000343

    8. Backus, G. E. and J. F. Gilbert, "Numerical application of a formalism for geophysical inverse problems," Geopgys. J. Astron. Soc., Vol. 13, 247-276, 1967.
    doi:10.1111/j.1365-246X.1967.tb02159.x

    9. Backus, G. and F. Gilbert, "The resolving power of gross Earth data," Geopgys. J. Astron. Soc., Vol. 16, 169-205, 1968.
    doi:10.1111/j.1365-246X.1968.tb00216.x

    10. Backus, G. and F. Gilbert, "Uniqueness in the inversion of inaccurate gross Earth data," Phil. Trans. R. Soc. London. Ser. A, Vol. 266, 123-192, March 1970.
    doi:10.1098/rsta.1970.0005

    11. Habashy, T. M., E. Y. Chow, and D. G. Dudley, "Profile inversion using the renormalized source-type integral equation approach," IEEE Transactions on Antenna and Propagation, Vol. 38, 668-682, 1990.
    doi:10.1109/8.53495

    12. Habashy, T. M., R. W. Groom, and B. R. Spies, "Beyond the Born and Rytov approximations: A nonlinear approach to electromagnetic scattering," Journal of Geophysical Research, Vol. 98, No. B2, 1759-1775, February 1993.
    doi:10.1029/92JB02324

    13. Born, M. and E. Wolf, Principles of Optics, Pergamon, New York, 1980.

    14. Rytov, S. M., "Diffraction of light by ultrasonic waves," Izv. Akad. Nauk. SSSR., Ser. Fiz. 2, 223, 1937.

    15. Oristaglio, M. L., "Accuracy of the Born and Rytov approximations for the reflection and refraction at a plane interface," Optical Society of America, Vol. 2, No. 11, 1987-1992, November 1985.
    doi:10.1364/JOSAA.2.001987

    16. Rabiner, L. R. and R. W. Schafer, Digital Processing of Speech Signals, Prentice-Hall, Englewood Cliffs, N.J., 1978.

    17. Keller, J. B., "Accuracy and validity of the Born and Rytov approximations," J. Opt. Soc. Am., Vol. 59, 1003-1004, August 1969.
    doi:10.1364/JOSA.59.001003

    18. Sancer, M. and A. D. Varvatsis, "A comparison of the Born and Rytov methods," Proceedings of the IEEE, 140-141, January 1970.
    doi:10.1109/PROC.1970.7551

    19. Torres-Verdin, C. and T. M. Habashy, "Rapid 2.5-dimensional forward modeling and inversion via a new nonlinear sacttering approximation," Radio Science, Vol. 29, No. 4, 1051-1079, July-August 1994.
    doi:10.1029/94RS00974

    20. Trantanella, C. J., "Beyond the Born approximation in one- and two-dimensional profile reconstruction,", Ph.D. dissertation submitted to the faculty of the Department of Electrical and Computer Engineering, University of Arizona, May 1994.

    21. Adopley, J. A. K., "A comparison among localized approximations in one-dimensional profile reconstruction,", Ph.D. dissertation submitted to the faculty of the Department of Electrical and Computer Engineering, University of Arizona, December 1996.

    22. Trantanella, C. J., D. G. Dudley, and K. A. Nabulsi, "Beyond the Born approximation in one-dimensional profile reconstruction," J. Opt. Soc. Am., Vol. 12, No. 7, 1469-1478, July 1995.
    doi:10.1364/JOSAA.12.001469

    23. Ramo, S., J. R. Whinnery, and T. Van Duzer, Fields and Waves in Communication Electronics, 2nd Ed., John Wiley & Sons Inc., 1984.

    24. Tabbara, W., "Reconstruction of Permittivity profiles from a Spectral Analysis of the reflection Coefficient," IEEE Transactions on Antenna and Propagation, Vol. AP-27, No. 2, 241-244, March 1979.
    doi:10.1109/TAP.1979.1142070

    25. Chipman, J. S., "On least squares with insufficient observation," Americam Statistical Association Journal, 1078-1111, December 1964.
    doi:10.1080/01621459.1964.10480751

    26. Zhou, Y. and C. K. Rushforth, "Least-squares reconstruction of spatially limited objects using smoothness and non-negativity constraints," Applied Optics, Vol. 21, No. 7, 1249-1252, April 1982.
    doi:10.1364/AO.21.001249

    27. Tijhuis, A. G. and C. Van Der Worm, "Iterative approach to the frequency-domain solution of the inverse-scattering problem for an inhomogeneous lossless dielectic slab," IEEE Transactions on Antenna and Propagation, Vol. AP-32, No. 7, 711-716, July 1984.
    doi:10.1109/TAP.1984.1143410

    28. Kennett, B. L. N. and P. R. Williamson, "Subspace methods for large-scale nonlinear inversion," Mathematical Geophysics, 139-154, 1988.
    doi:10.1007/978-94-009-2857-2_7

    29. Kennett, B. L. N., M. S. Sambridge, and P. R. Williamson, "Subspace methods for large inverse problems with multiple parameter classes," Geophysicical Journal, Vol. 94, 237-247, 1988.
    doi:10.1111/j.1365-246X.1988.tb05898.x

    30. Sambridge, M. S., "Non-linear arrival time inversion: constrained velocity anomalies by seeking smooth model in 3-D," Geophys. J. Int., Vol. 102, 653-677, 1990.
    doi:10.1111/j.1365-246X.1990.tb04588.x

    31. Oldenburg, D. W. and R. G. Eliss, "Inversion of geophysical data using an approximate inverse mapping," Geophys. J. Int., Vol. 105, 325-353, 1991.
    doi:10.1111/j.1365-246X.1991.tb06717.x

    32. Oldenburg, D. W., P. R. McGillivary, and R. G. Eliss, "Generalized subspace methodes for large-scale inverse problems," Geophys. J. Int., Vol. 114, 12-20, 1993.
    doi:10.1111/j.1365-246X.1993.tb01462.x

    33. Kleinman, R. E. and P. M. van den Berg, "An extended range-modified gradient technique for profile inversion," Radio Science, Vol. 28, No. 5, 877-884, 1993.
    doi:10.1029/93RS01076

    34. Levenberg, K., "A method for the solution of certain non-linear problems in least squares," Quart. Appl. Math., No. 2, 164-168, July-August 1944.
    doi:10.1090/qam/10666

    35. Marquardt, D. W., "Least squares analysis of electron paramahnetic resonance Spectra," Journal of Molecular Spectroscopy, Vol. 7, 269-279, 1961.
    doi:10.1016/0022-2852(61)90360-5

    36. Marquardt, D. W., "Generalized inverses, ridge regression, biased linear estimation and nonlinear estimation," Tecnometrics, Vol. 2, No. 3, 591-612, 1970.
    doi:10.2307/1267205

    37. Tikhonov, A. N. and V. Y. Arsenin, Solutions of Ill-Posed Problems, V. H. Winston & Sons, Washington, D.C., 1977.

    38. Constable, S. C., R. L. Parker, and C. G. Constable, "Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data," Geophysics, Vol. 52, No. 3, 289-300, March 1987.
    doi:10.1190/1.1442303

    39. Smith, J. T. and J. R. Booker, "Magnetotelluric inversion for minimum structure," Geophysics, Vol. 53, No. 12, 1565-1576, December 1988.
    doi:10.1190/1.1442438

    40. Rudin, L. I., S. Osher, and E. Fatemi, "Nonlinear total variation based noise removal algorithm," Physica D, Vol. 60, 259-268, 1992.
    doi:10.1016/0167-2789(92)90242-F

    41. Osher, S. and L. I. Rudin, "Feature-oriented image enhancement using shock filters," SIAM J. Numer. Anal., Vol. 27, No. 4, 919-940, August 1990.
    doi:10.1137/0727053

    42. van den Berg, P. M. and R. E. Kleinman, "A total variation enhanced modified gradient algorithm for profile reconstruction," University of Delaware Tecnical Report, Newark DE 19716, Vol. 95-4, 1995.

    43. Oldenburg, D., "Inversion of electromagnetic data: An overview of new techniques," Surveys in Geophysics, Vol. 11, 231-270, 1990.
    doi:10.1007/BF01901661

    44. Habashy, T. M and R. Mittra, "On some inversion methods in electromagnetics," Journal of Electromagnetic Waves and Applications, Vol. 1, No. 1, 25-58, 1987.
    doi:10.1163/156939387X00081

    45. Miller, E. L. and A. S. Willsky, "A multiscale, statistically based inversion scheme for linearized inverse scattering problems," IEEE Transactions on Geoscience and Remote Sensing, Vol. 34, No. 2, 346-357, March 1996.
    doi:10.1109/36.485112

    46. Zhdanov, M. S. and S. Fang, Three-dimensional quasi-linear electromagnetic inversion, Vol. 31, No. 4, 741-754, Radio Science, July-August 1996.

    47. Dudley, D. G., Mathematical Foundations for Electromagnetic Theory, IEEE Press, Piscataway, NJ, USA, 1994.
    doi:10.1109/9780470545232

    48. Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in Fortran: The Art of Scientific Computating, 2nd Ed., Cambridge University Press, 1992.

    49. Jeffreys, H., "An alternative to the rejection of observations," Proceedings of the Royal Society of London, ser. A, Vol. CXXXVII, 78-87, September 1932.

    50. Bender, C. M. and S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers, McGraw-Hill, Inc., 1978.