Vol. 175

Latest Volume
All Volumes
All Issues

Deep Learning Approach Based Optical Edge Detection Using ENZ Layers (Invited)

By Yifan Shou, Yiming Feng, Yiyun Zhang, Hongsheng Chen, and Haoliang Qian
Progress In Electromagnetics Research, Vol. 175, 81-89, 2022


Metamaterials offer a chance to design films that could achieve optical differentiation due to their special properties. Layered film would be the simplest case considering the easy-fabrication and compactness. Instead of performing the optical differentiation at the Fourier plane, Green-function based multi-layers are used to achieve optical differentiation. In this work, epsilon-near-zero (ENZ) material is utilized to realize the optical differentiation owning to the special optical properties that the reflection increases with the increase of incident angle, which fits the characteristics of optical differentiation. In addition, deep learning is also used in this work to simplify the design of ENZ layers to achieve the optical differentiation, and further realize the optical edge detection. Simulations based on the Fresnel diffraction are carried out to verify that our films designed by this method could realize the optical detection under different cases.


Yifan Shou, Yiming Feng, Yiyun Zhang, Hongsheng Chen, and Haoliang Qian, "Deep Learning Approach Based Optical Edge Detection Using ENZ Layers (Invited)," Progress In Electromagnetics Research, Vol. 175, 81-89, 2022.


    1. Smith, D. R., J. B. Pendry, and M. C. K. Wiltshire, "Metamaterials and negative refractive index," Science, Vol. 305, 788-792, 2004.

    2. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966, 2000.

    3. Tsakmakidis, K. L., A. D. Boardman, and O. Hess, "Trapped rainbow storage of light in metamaterials," Nat., Vol. 450, 397-401, 2007.

    4. Hoffman, A. J., L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, "Negative refraction in semiconductor metamaterials," Nat. Mater., Vol. 6, 946-950, 2007.

    5. Jiang, W. X., J. Y. Chin, and T. J. Cui, "Anisotropic metamaterial devices," Mater. Today, Vol. 12, 26-33, 2009.

    6. Iyer, A. K., D. Pratap, J. G. Pollock, and S. A. Ramakrishna, "Anisotropic metamaterial optical fibers," Opt. Express, Vol. 23, 9074-9085, 2015.

    7. Zeng, Y., H. Qian, M. J. Rozin, Z. Liu, and A. R. Tao, "Enhanced second harmonic generation in double-resonance colloidal metasurfaces," Adv. Funct. Mater., Vol. 28, 1803019, 2018.

    8. Qian, H., "Efficient light generation from enhanced inelastic electron tunnelling," Nat. Photonics, Vol. 12, 485-488, 2018.

    9. Lu, D., H. Qian, K. Wang, H. Shen, F. Wei, Y. Jiang, E. E. Fullerton, P. K. L. Yu, and Z. Liu, "Nanostructuring multilayer hyperbolic metamaterials for ultrafast and bright Green InGaN quantum wells," Adv. Mater., Vol. 30, 1706411, 2018.

    10. Ghobadi, A., H. Hajian, B. Butun, and E. Ozbay, "Strong light-matter interaction in lithography-free planar metamaterial perfect absorbers," ACS Photonics, Vol. 5, 4203-4221, 2018.

    11. Galfsky, T., J. Gu, E. E. Narimanov, and V. M. Menon, "Photonic hypercrystals for control of light-matter interactions," Proc. Natl. Acad. Sci. U.S.A., Vol. 114, 5125-5139, 2017.

    12. Krishnamoorthy, H. N. S., Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, "Topological transitions in metamaterials," Science, Vol. 336, 205-209, 2012.

    13. Banerji, S., M. Meem, A. Majumder, F. G. Vasquez, B. Sensale-Rodriguez, and R. Menon, "Imaging with flat optics: Metalenses or diffractive lenses?," Opt., Vol. 6, No. 6, 805-810, 2019.

    14. Lu, D. and Z. Liu, "Hyperlenses and metalenses for far-field super-resolution imaging," Nat. Commun., Vol. 3, 1-9, 2012.

    15. Liu, Z., H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical hyperlens magnifying sub-diffraction-limited objects," Science, Vol. 315, 1686, 2007.

    16. Ma, Q., et al., "Experimental demonstration of hyperbolic metamaterial assisted illumination nanoscopy," ACS Nano, Vol. 12, 11316-11322, 2018.

    17. Smolyaninov, I. I., Y. J. Hung, and C. C. Davis, "Imaging and focusing properties of plasmonic metamaterial devices," Phys. Rev. B, Vol. 76, 205424, 2007.

    18. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780-1782, 2006.

    19. Cai, W., U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nat. Photonics, Vol. 1, 224-227, 2007.

    20. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, 2006.

    21. Fang, Y. and M. Sun, "Nanoplasmonic waveguides: Towards applications in integrated nanophotonic circuits," Light Sci. Appl., Vol. 4, e294-e294, 2015.

    22. Liu, Y., J. Zhang, H. Liu, S. Wang, and L. M. Peng, "Electrically driven monolithic subwavelength plasmonic interconnect circuits," Sci. Adv., Vol. 3, e1701456, 2017.

    23. Navon, N., S. Nascimbène, F. Chevy, and C. Salomon, "Performing mathematical operations with metamaterials," Science, Vol. 343, 729-732, 2014.

    24. Zangeneh-Nejad, F., D. L. Sounas, A. Alù, and R. Fleury, "Analogue computing with metamaterials," Nat. Rev. Mater., Vol. 6, 207-225, 2020.

    25. Cheng, K., Y. Fan, W. Zhang, Y. Gong, S. Fei, and H. Li, "Optical realization of wave-based analog computing with metamaterials," Appl. Sci., Vol. 11, 141, 2020.

    26. Zhou, J., et al., "Metasurface enabled quantum edge detection," Sci. Adv., Vol. 6, 4385-4401, 2020.

    27. Zhou, J., H. Qian, J. Zhao, M. Tang, Q. Wu, M. Lei, H. Luo, S. Wen, S. Chen, and Z. Liu, "Two-dimensional optical spatial differentiation and high-contrast imaging," Natl. Sci. Rev., Vol. 8, No. 6, nwaa176, 2021.

    28. Zhou, J., H. Qian, C.-F. Chen, and Z. Liu, "Optical edge detection based on high-efficiency dielectric metasurface," Proc. Natl. Acad. Sci., Vol. 166, 11137-11140, 2019.

    29. Zhou, J., H. Qian, H. Luo, S. Wen, and Z. Liu, "A spin controlled wavefront shaping metasurface with low dispersion in visible frequencies," Nanoscale, Vol. 11, 17111-17119, 2019.

    30. Zhou, J., H. Qian, G. Hu, H. Luo, S. Wen, and Z. Liu, "Broadband photonic spin hall meta-lens," ACS Nano, Vol. 12, 82-88, 2018.

    31. Kiarashinejad, Y., S. Abdollahramezani, M. Zandehshahvar, O. Hemmatyar, and A. Adibi, "Deep learning reveals underlying physics of light-matter interactions in nanophotonic devices," Adv. Theory Simulations, Vol. 2, 1900088, 2019.

    32. Malkiel, I., M. Mrejen, A. Nagler, U. Arieli, L. Wolf, and H. Suchowski, "Plasmonic nanostructure design and characterization via deep learning," Light Sci. Appl., Vol. 7, 1-8, 2018.

    33. An, S., et al., "A deep learning approach for objective-driven all-dielectric metasurface design," ACS Photonics, Vol. 6, 3196-3207, 2019.

    34. Qiu, T., X. Shi, J. Wang, Y. Li, S. Qu, Q. Cheng, T. Cui, and S. Sui, "Deep learning: A rapid and efficient route to automatic metasurface design," Adv. Sci., Vol. 6, 1900128, 2019.

    35. Kiarashinejad, Y., M. Zandehshahvar, S. Abdollahramezani, O. Hemmatyar, R. Pourabolghasem, and A. Adibi, "Knowledge discovery in nanophotonics using geometric deep learning," Adv. Intell. Syst., Vol. 2, 1900132, 2020.

    36. Campione, S., S. Liu, A. Benz, J. F. Klem, M. B. Sinclair, and I. Brener, "Epsilon-near-zero modes for tailored light-matter interaction," Phys. Rev. Appl., Vol. 4, 044011, 2015.

    37. Niu, X., X. Hu, S. Chu, and Q. Gong, "Epsilon-near-zero photonics: A new platform for integrated devices," Adv. Opt. Mater., Vol. 6, 1701292, 2018.

    38. Son, H. and K. Oh, "Light propagation analysis using a translated plane angular spectrum method with the oblique plane wave incidence," J. Opt. Soc. Am. A, Vol. 32, 949, 2015.

    39. Wang, Z., C. Chen, K. Wu, H. Chong, and H. Ye, "Transparent conductive oxides and their applications in near infrared plasmonics," Phys. Status Solidi, Vol. 216, 1700794, 2019.