Vol. 174

Latest Volume
All Volumes
All Issues

Squeezing of Hyperbolic Polaritonic Rays in Cylindrical Lamellar Structures

By Lu Song, Lian Shen, and Huaping Wang
Progress In Electromagnetics Research, Vol. 174, 23-32, 2022


We propose the squeezing of hyperbolic polaritonic rays in cylindrical lamellar structures with hyperbolic dispersion. This efficient design is presented through conformal mapping transformation by combining with circular effective-medium theory (CEMT) that is adopted to predict the optical response of concentric cylindrical binary metal-dielectric layers. The volume-confined hyperbolic polaritons supported in these cylindrical lamellar structures could be strongly squeezed when they propagate toward the origin since their wavelength shortens, and velocity decreases. To demonstrate the importance of using CEMT for engineering highly-squeezed hyperbolic polaritons, both CEMT and planar effective-medium theory (PEMT) are utilized to design the cylindrical lamellar structures. It is shown that the PEMT-based design is unable to achieve hyperbolic polaritons squeezing even with a sufficiently large number of metal-dielectric binary layers. Remarkably, this study opens new opportunities for hyperbolic polaritons squeezing, and the findings are promising for propelling nanophotonics technologies and research endeavours.


Lu Song, Lian Shen, and Huaping Wang, "Squeezing of Hyperbolic Polaritonic Rays in Cylindrical Lamellar Structures," Progress In Electromagnetics Research, Vol. 174, 23-32, 2022.


    1. Tang, L., S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, "Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna," Nat. Photonics, Vol. 2, No. 4, 226, 2008.

    2. Yuan, Z., B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, "Electrically driven single-photon source," Science, Vol. 295, 102, 2002.

    3. Akimov, A. V., A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, "Generation of single optical plasmons in metallic nanowires coupled to quantum dots," Nature, Vol. 450, 402, 2007.

    4. Park, I. Y., S. Kim, J. Choi, D. H. Lee, Y. J. Kim, M. F. Kling, M. I. Stockman, and S. W. Kim, "Plasmonic generation of ultrashort extreme-ultraviolet light pulses," Nat. Photonics, Vol. 5, 677, 2011.

    5. Sederber, S. and A. Y. Elezzabi, "Ponderomotive electron acceleration in a silicon-based nanoplasmonic waveguide," Phys. Rev. Lett., Vol. 113, 167401, 2014.

    6. Wang, K., H. Qian, Z. Liu, and P. K. L. Yu, "Second-order nonlinear susceptibility enhancement in gallium nitride nanowires," Progress In Electromagnetics Research, Vol. 168, 25-30, 2020.

    7. Aouani, H., M. Rahmani, M. Navarro-Cía, and S. A. Maier, "Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna," Nat. Nanotechnol., Vol. 9, 290, 2014.

    8. Kim, S., J. Jin, Y. J. Kin, I. Y. Park, Y. Kim, and S. W. Kim, "High-harmonic generation by resonant plasmon eld enhancement," Nature, Vol. 453, 757, 2008.

    9. Beneck, R. J., A. Das, G. Mackertich-Sengerdy, R. J. Chaky, Y. Wu, S. Soltani, and D. Werner, "Reconfigurable antennas: A review of recent progress and future prospects for next generation," Progress In Electromagnetics Research, Vol. 171, 89-121, 2021.

    10. Choo, H., M. K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, "Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper," Nat. Photonics, Vol. 6, 838-844, 2012.

    11. Stockman, M. I., "Nanofocusing of optical energy in tapered plasmonic waveguides," Phys. Rev. Lett., Vol. 93, 137404, 2004.

    12. Srituravanich, W., L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, "Flying plasmonic lens in the near field for high-speed nanolithography," Nat. Nanotechnol., Vol. 3, 733, 2008.

    13. Wagner, C. and N. Harned, "Lithography gets extreme," Nat. Photonics, Vol. 4, 24, 2010.

    14. Sternbach, A. J., S. H. Chae, S. Latini, A. A. Rikhter, Y. Shao, B. Li, D. Rhodes, B. Kim, P. J. Schuck, X. Xu, X. Y. Zhu, R. D. Averitt, H. Hone, M. M. Fogler, A. Rubio, and D. N. Basov, "Programmable hyperbolic polaritons in van der Waals semiconductors," Science, Vol. 371, 5529, 2021.

    15. Chen, M., X. Lin, T. H. Dinh, Z. Zheng, J. Shen, Q. Ma, H. Chen, P. Jarillo-Herrero, and S. Dai, "Configurable phonon polaritons in twisted α-MoO3," Nat. Mater., Vol. 19, 1307, 2020.

    16. Sedov, E. S., I. V. Iorsh, S. M. Arakelian, A. P. Alodjants, and A. Kavokin, "Hyperbolic metamaterials with Bragg polaritons," Phys. Rev. Lett., Vol. 114, 237402, 2015.

    17. Yoxall, E., M. Schnell, A. Y. Nikitin, O. Txoperena, A. Woessner, M. B. Lundeberg, F. Casanova, L. E. Hueso, F. H. Koppens, and R. Hillenbrand, "Direct observation of ultraslow hyperbolic polariton propagation with negative phase velocity," Nat. Photonics, Vol. 9, 674, 2015.

    18. Caldwell, J. D., A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, "Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride," Nat. Commun., Vol. 5, 5221, 2014.

    19. Li, P., M. Lewin, A. V. Kretinin, J. D. Caldwell, K. S. Novoselov, T. Taniguchi, K. Watanabe, F. Gaussmann, and T. Taubner, "Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing," Nat. Commun., Vol. 6, 7507, 2015.

    20. Dai, S., Q. Ma, T. Andersen, A. Mcleod, Z. Fei, M. Liu, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, "Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material," Nat. Commun., Vol. 6, 6963, 2015.

    21. Alfaro-Mozaz, F. J., P. Alonso-González, S. Vélez, I. Dolado, M. Autore, S. Mastel, F. Casanova, L. E. Hueso, P. Li, A. Y. Nikitin, and R. Hillenbrand, "Nanoimaging of resonating hyperbolic polaritons in linear boron nitride antennas," Nat. Commun., Vol. 8, 15624, 2017.

    22. Shen, L., X. Lin, M. Shalaginov, T. Low, X. Zhang, B. Zhang, and H. Chen, "Broadband enhancement of on-chip single-photon extraction via tilted hyperbolic metamaterials," Appl. Phys. Rev., Vol. 7, 021403, 2020.

    23. Ishii, S., A. V. Kildishev, E. Narimanov, V. M. Shalaev, and V. P. Drachev, "Sub-wavelength interference pattern from volume plasmon polaritons in a hyperbolic medium," Laser & Photon. Rev., Vol. 7, 265, 2013.

    24. Liu, Z., H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical hyperlens magnifying sub-diffraction-limited objects," Science, Vol. 315, 5819, 1686, 2007.

    25. Rho, J., Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, "Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies," Nat. Commun., Vol. 1, 143, 2010.

    26. Sun, J., M. I. Shalaev, and N. M. Litchinitser, "Experimental demonstration of a non-resonant hyperlens in the visible spectral range," Nat. Commun., Vol. 6, 7201, 2015.

    27. Xiong, Y., Z. Liu, and X. Zhang, "Projecting deep-subwavelength patterns from diffraction-limited masks using metal-dielectric multilayers," Appl. Phys. Lett., Vol. 93, 111116, 2008.

    28. Shen, L., A. V. Kildishev, and H. Chen, "Designing optimal nanofocusing with a gradient hyperlens," Nanophotonics, Vol. 7, 479, 2018.

    29. Jacob, Z., L. V. Alekseyev, and E. Narimanov, "Optical hyperlens: Far-field imaging beyond the diffraction limit," Opt. Express, Vol. 14, 8247, 2006.

    30. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780, 2006.

    31. Leonhardt, U., "Optical conformal mapping," Science, Vol. 23, 1777, 2006.

    32. Shen, L., B. Zheng, Z. Liu, Z. Wang, S. Lin, S. Dehdashti, E. Li, and H. Chen, "Large-scale far-infrared invisibility cloak hiding object from thermal detection," Adv. Opt. Mater., Vol. 112, 7635, 2015.

    33. Chen, H., B. Zheng, L. Shen, H. Wang, X. Zhang, N. Zheludev, and B. Zhang, "Ray-optics cloaking devices for large objects in incoherent natural light," Nat. Commun., Vol. 4, 2652, 2013.

    34. Chen, H., B. Wu, B. Zhang, and J. Kong, "Electromagnetic wave interactions with a metamaterial cloak," Phys. Rev. Lett., Vol. 99, 063903, 2007.

    35. Xi, S., H. Chen, B. Wu, and J. Kong, "One-directional perfect cloak created with homogeneous material," IEEE Microw. Wireless Compon. Lett., Vol. 19, No. 3, 131, 2009.

    36. Zhang, B., H. Chen, B. Wu, and J. Kong, "Extraordinary surface voltage effect in the invisibility cloak with an active device inside," Phys. Rev. Lett., Vol. 100, 063904, 2008.

    37. Qian, C., B. Zheng, Y. Shen, L. Jing, E. Li, L. Shen, and H. Chen, "Deep-learning-enabled self-adaptive microwave cloak without human intervention," Nat. Photonics, Vol. 14, 383, 2020.

    38. Xu, S., X. Cheng, S. Xi, R. Zhang, H. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, "Experimental demonstration of a free space cylindrical cloak without superluminal propagation," Phys. Rev. Lett., Vol. 109, 223903, 2012.

    39. Aubry, A., D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, "Plasmonic light-harvesting devices over the whole visible spectrum," Nano Lett., Vol. 10, 2574, 2010.

    40. Pendry, J. B., A. I. Fernández-Domínguez, Y. Luo, and R. Zhao, "Capturing photons with transformation optics," Nat. Phys., Vol. 9, 518, 2013.

    41. Luo, Y., D. Y. Lei, S. A. Maier, and J. B. Pendry, "Broadband light harvesting nanostructures robust to edge bluntness," Phys. Rev. Lett., Vol. 108, 023901, 2012.

    42. Yeh, P., A. Yariv, and E. Marom, "Electromagnetic propagation in periodic stratified media. I. General theory," J. Opt. Soc. Am., Vol. 67, 423, 1977.

    43. Yeh, P., Optical Waves in Layered Media, Wiley, New York, 1988.

    44. Elser, J. and V. A. Podolskiy, "Nonlocal effects in effective-medium response of nanolayered metamaterials," Appl. Phys. Lett., Vol. 90, 191109, 2007.

    45. Johnson, P. B. and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B, Vol. 6, No. 12, 4370, 1972.

    46. Johnson, R. W., A. Hultqvist, and S. F. Bent, "A brief review of atomic layer deposition: From fundamentals to applications," Mater. Today, Vol. 17, 236-246, 2016.

    47. Bassim, N., K. Scott, and L. A. Giannuzzi, "Recent advances in focused ion beam technology and applications," MRS Bulletin, Vol. 39, 317-325, 2014.