Vol. 173

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

VOC Detections with Optical Spectroscopy

By Yuxin Xing, Gaoxuan Wang, Tie Zhang, Fengjiao Shen, Lingshuo Meng, Lihui Wang, Fangmei Li, Yuqi Zhu, Yuhao Zheng, Nan He, and Sailing He
Progress In Electromagnetics Research, Vol. 173, 71-92, 2022


Volatile organic compounds (VOCs) have received increasing attentions recently. They are important for air quality monitoring, and biomarkers for diseases diagnosis. For the gas sensor community, various detection technologies were explored not only to detect total VOCs, but also aim for sensor selectivity. Commercially available VOC sensors, such as metal oxide based or photoionization detectors, are suitable for total VOCs but lack of selectivity. With the advancement of optical spectroscopy, it provides a good solution for specific VOC detections. In this review, various spectroscopy techniques are summarised focusing on increasing sensor sensitivity and selectivity. The techniques included in the paper are, non-dispersive infrared, multi-pass cell spectroscopy, cavity enhanced absorption photoacoustic spectroscopy and Fourier transform infrared spectroscopy. Each technique has its pros and cons, which are also discussed.


Yuxin Xing, Gaoxuan Wang, Tie Zhang, Fengjiao Shen, Lingshuo Meng, Lihui Wang, Fangmei Li, Yuqi Zhu, Yuhao Zheng, Nan He, and Sailing He, "VOC Detections with Optical Spectroscopy," Progress In Electromagnetics Research, Vol. 173, 71-92, 2022.


    1. Inamdar, A. A., S. Morath, and J. W. Bennett, "Fungal volatile organic compounds: More than just a funky smell?," Annual Review of Microbiology, Vol. 74, No. 1, 101-116, 2020, doi: 10.1146/annurev-micro-012420-080428.

    2. Sater, H. M., L. N. Bizzio, D. M. Tieman, and P. D. Muñoz, "A review of the fruit volatiles found in blueberry and other vaccinium species," Journal of Agricultural and Food Chemistry, Vol. 68, No. 21, 5777-5786, May 27, 2020, doi: 10.1021/acs.jafc.0c01445.

    3. Picazo-Aragonés, J., A. Terrab, and F. Balao, "Plant volatile organic compounds evolution: Transcriptional regulation, epigenetics and polyploidy," Int. J. Mol. Sci., Vol. 21, No. 23, November 25, 2020 (in English), doi: 10.3390/ijms21238956.

    4. Wang, M., C. Wang, S. Huang, and H. Yuan, "Study on asphalt volatile organic compounds emission reduction: A state-of-the-art review," Journal of Cleaner Production, Vol. 318, 128596, October 10, 2021, doi: https://doi.org/10.1016/j.jclepro.2021.128596.

    5. Nurmatov, U., N. Tagieva, S. Semple, G. Devereux, and A. Sheikh, "Volatile organic compounds and risk of asthma and allergy: A systematic review and meta-analysis of observational and interventional studies," Prim. Care. Respir. J., Vol. 22, No. 1, 9-15, March 2013 (in English), doi: 10.4104/pcrj.2013.00010.

    6. Hua, Q., Y. Zhu, and H. Liu, "Detection of volatile organic compounds in exhaled breath to screen lung cancer: A systematic review," Future Oncol., Vol. 14, No. 16, 1647-1662, July 2018 (in English), doi: 10.2217/fon-2017-0676.

    7. Novak, B. J., D. R. Blake, S. Meinardi, F. S. Rowland, A. Pontello, D. M. Cooper, and P. R. Galassetti, "Exhaled methyl nitrate as a noninvasive marker of hyperglycemia in type 1 diabetes," Proc. Natl. Acad. Sci. U S A, Vol. 104, No. 40, 15613-8, October 2, 2007 (in English), doi: 10.1073/pnas.0706533104.

    8. Ahmed, W. M., O. Lawal, T. M. Nijsen, R. Goodacre, and S. J. Fowler, "Exhaled volatile organic compounds of infection: A systematic review," ACS Infect. Dis., Vol. 3, No. 10, 695-710, October 13, 2017 (in English), doi: 10.1021/acsinfecdis.7b00088.

    9. Ashenhurst, J., Infrared Spectroscopy: A Quick Primer On Interpreting Spectra, 2016.

    10. Hodgkinson, J. and R. P. Tatam, "Optical gas sensing: A review," Measurement Science and Technology, Vol. 24, No. 1, 012004, November 28, 2012, doi: 10.1088/0957-0233/24/1/012004.

    11. Krier, A., M. Yin, V. Smirnov, P. Batty, P. J. Carrington, V. Solovev, and V. Sherstnev, "The development of room temperature LEDs and lasers for the mid-infrared spectral range," Physica Status Solidi (A), Vol. 205, No. 1, 129-143, 2008, doi: https://doi.org/10.1002/pssa.200776833.

    12. Alexandrov, S., G. A. Gavrilov, A. A. Kapralov, S. A. Karandashev, B. A. Matveev, G. Y. Sotnikova, and N. M. Stus, "Portable optoelectronic gas sensors operating in the mid-IR spectral range (lambda = 35 μm)," Second International Conference on Lasers for Measurement and Information Transfer. SPIE, 2002.

    13. Haigh, M. K., G. R. Nash, S. J. Smith, L. Buckle, M. T. Emeny, and T. Ashley, "Mid-infrared AlxIn1-xSb light-emitting diodes," Applied Physics Letters, Vol. 90, No. 23, 231116, 2007, doi: 10.1063/1.2745256.

    14. Liu, N., S. Zhou, L. Zhang, B. Yu, H. Fischer, W. Ren, and J. Li, "Standoff detection of VOCs using external cavity quantum cascade laser spectroscopy," Laser Physics Letters, Vol. 15, No. 8, 085701, June 6, 2018, doi: 10.1088/1612-202x/aac356.

    15. Ciaffoni, L., G. Hancock, J. J. Harrison, J.-P. H. van Helden, C. E. Langley, R. Peverall, G. A. D. Ritchie, and S. Wood, "Demonstration of a mid-infrared cavity enhanced absorption spectrometer for breath acetone detection," Analytical Chemistry, Vol. 85, No. 2, 846-850, January 15, 2013, doi: 10.1021/ac3031465.

    16. Qu, Y., Q. Li, H. Gong, K. Du, S. Bai, D. Zhao, H. Ye, and M. Qiu, "Spatially and spectrally resolved narrowband optical absorber based on 2D grating nanostructures on metallic films," Advanced Optical Materials, Vol. 4, No. 3, 480-486, 2016, doi: https://doi.org/10.1002/adom.201500651.

    17. Kang, S., Z. Qian, V. Rajaram, S. D. Calisgan, A. Alù, and M. Rinaldi, "Ultra-narrowband metamaterial absorbers for high spectral resolution infrared spectroscopy," Advanced Optical Materials, Vol. 7, No. 2, 1801236, 2019, doi: https://doi.org/10.1002/adom.201801236.

    18. Wang, Z., J. K. Clark, Y.-L. Ho, S. Volz, H. Daiguji, and J.-J. Delaunay, "Ultranarrow and wavelength-tunable thermal emission in a hybrid metal-optical tamm state structure," ACS Photonics, Vol. 7, No. 6, 1569-1576, June 17, 2020, doi: 10.1021/acsphotonics.0c00439.

    19. Giannini, V., G. Vecchi, and J. Gómez Rivas, "Lighting up multipolar surface plasmon polaritons by collective resonances in arrays of nanoantennas," Physical Review Letters, Vol. 105, No. 26, 266801, December 20, 2010, doi: 10.1103/PhysRevLett.105.266801.

    20. Gokhale, V. J., P. D. Myers, and M. Rais-Zadeh, "Subwavelength plasmonic absorbers for spectrally selective resonant infrared detectors," SENSORS, 2014 IEEE, 982-985, November 2-5, 2014, doi: 10.1109/ICSENS.2014.6985167.

    21. Aydin, K., V. E. Ferry, R. M. Briggs, and H. A. Atwater, "Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers," Nature Communications, Vol. 2, No. 1, 517, November 1, 2011, doi: 10.1038/ncomms1528.

    22. Xing, Y., B. Urasinska-Wojcik, and J. W. Gardner, "Plasmonic enhanced CMOS non-dispersive infrared gas sensor for acetone and ammonia detection," 2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), 1-5, May 14-17, 2018, doi: 10.1109/I2MTC.2018.8409745.

    23. Su, P., Z. Han, D. Kita, P. Becla, H. Lin, S. Deckoff-Jones, K. Richardson, L. C. Kimerling, J. Hu, and A. Agarwal, "Monolithic on-chip mid-IR methane gas sensor with waveguide-integrated detector," Applied Physics Letters, Vol. 114, No. 5, 051103, 2019, doi: 10.1063/1.5053599.

    24. Jin, T., J. Zhou, H.-Y. G. Lin, and P. T. Lin, "Mid-infrared chalcogenide waveguides for real-time and nondestructive volatile organic compound detection," Analytical Chemistry, Vol. 91, No. 1, 817-822, January 2, 2019, doi: 10.1021/acs.analchem.8b03004.

    25. Park, J. H., S. E. Han, P. Nagpal, and D. J. Norris, "Observation of thermal beaming from tungsten and Molybdenum Bull's eyes," ACS Photonics, Vol. 3, No. 3, 494-500, March 16, 2016, doi: 10.1021/acsphotonics.6b00022.

    26. Herriott, D. R., H. Kogelnik, and R. Kompfner, "Off-axis paths in spherical mirror interferometers," Appl. Opt., Vol. 3, 523-526, 1964.

    27. McManus, J. B., P. L. Kebabian, and W. S. Zahniser, "Astigmatic mirror multipass absorption cells for long-path-length spectroscopy," Applied Optics, Vol. 34, No. 18, 3336-3348, June 1995, doi: 10.1364/ao.34.003336.

    28. Ozharar, S. and A. Sennaroglu, "Mirrors with designed spherical aberration for multi-pass cavities," Opt. Lett., Vol. 42, No. 10, 1935-1938, May 2017, doi: 10.1364/ol.42.001935.

    29. Cao, Y. N., G. Cheng, X. Tian, G.-S. Wang, Y. Cao, C.-Y. Sun, Y.-L. Zhang, G.-X. Cheng, and H.-T. Yang, "The design and simulation of a novel ring multi-pass optical cell for detection of environmental trace gas," Optik, Vol. 227, Art No. 166095, February 2021, doi: 10.1016/j.ijleo.2020.166095.

    30. Nadeem, F., J. Mandon, A. Khodabakhsh, S. M. Cristescu, and F. J. M. Harren, "Sensitive spectroscopy of acetone using a widely tunable external-cavity quantum cascade laser," Sensors, Vol. 18, No. 7, 2050, 2018, online available: https://www.mdpi.com/1424-8220/18/7/2050.

    31. Xia, J., F. Zhu, A. A. Kolomenskii, J. Bounds, S. Zhang, M. Amani, L. J. Fernyhough, and H. A. Schuessler, "Sensitive acetone detection with a mid-IR interband cascade laser and wavelength modulation spectroscopy," OSA Continuum, Vol. 2, No. 3, 640-654, March 15, 2019, doi: 10.1364/OSAC.2.000640.

    32. Schwarm, K. K., C. L. Strand, V. A. Miller, and R. M. Spearrin, "Calibration-free breath acetone sensor with interference correction based on wavelength modulation spectroscopy near 8.2 μm," Applied Physics B, Vol. 126, No. 1, 9, December 9, 2019, doi: 10.1007/s00340-019-7358-x.

    33. Lindley, R. E., M. Pradhan, and A. J. Orr-Ewing, "Measuring acetylene concentrations using a frequency chirped continuous wave diode laser operating in the near infrared," Analyst, Vol. 131, No. 6, 731-738, 2006, doi: 10.1039/B600506C.

    34. Zou, M., Z. Yang, L. Sun, and X. Ming, "Acetylene sensing system based on wavelength modulation spectroscopy using a triple-row circular multi-pass cell," Opt. Express, Vol. 28, No. 8, 11573-11582, April 13, 2020, doi: 10.1364/OE.388343.

    35. Shen, F., J. Akil, G. Wang, C. Poupin, R. Cousin, S. Siffert, E. Fertein, T.-N. Ba, and W. Chen, "Real-time monitoring of N2O production in a catalytic reaction process using mid-infrared quantum cascade laser," Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 221, 1-7, December 1, 2018, doi: https://doi.org/10.1016/j.jqsrt.2018.09.022.

    36. He, H., S. Gao, J. Hu, T. Zhang, T. Wu, Z. Qiu, C. Zhang, Y. Sun, and S. He, "In-situ testing of methane emissions from landfills using laser absorption spectroscopy," Applied Sciences, Vol. 11, No. 5, 2117, 2021, online available: https://www.mdpi.com/2076-3417/11/5/2117.

    37. Herbelin, J. M., J. A. McKay, M. A. Kwok, R. H. Ueunten, D. S. Urevig, D. J. Spencer, and D. J. Benard, "Sensitive measurement of photon lifetime and true reflectances in an optical cavity by a phase-shift method," Appl. Opt., Vol. 19, No. 1, 144-147, January 1, 1980, doi: 10.1364/AO.19.000144.

    38. Anderson, D. Z., J. C. Frisch, and C. S. Masser, "Mirror reflectometer based on optical cavity decay time," Appl. Opt., Vol. 23, No. 8, 1238, April 15, 1984 (in English), doi: 10.1364/ao.23.001238.

    39. O'Keefe, A. and D. A. G. Deacon, "Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources," Review of Scientific Instruments, Vol. 59, No. 12, 2544-2551, 1988, doi: 10.1063/1.1139895.

    40. Song, S., "Continuous-wave cavity ring-down spectroscopy and detection of trace methane," Fine Mechanics and Physics, University of Chinese Academy of Sciences, 2019.

    41. Parkes, A. M., R. E. Lindley, and A. J. Orr-Ewing, "Combining preconcentration of air samples with cavity ring-down spectroscopy for detection of trace volatile organic compounds in the atmosphere," Analytical Chemistry, Vol. 76, No. 24, 7329-7335, December 1, 2004, doi: 10.1021/ac048727j.

    42. Pradhan, M., R. E. Lindley, R. Grilli, I. R. White, D. Martin, and A. J. Orr-Ewing, "Trace detection of C2H2 in ambient air using continuous wave cavity ring-down spectroscopy combined with sample pre-concentration," Applied Physics B, Vol. 90, No. 1, 1-9, 2008, doi: 10.1007/s00340-007-2833-1.

    43. Wang, C. and A. B. Surampudi, "An acetone breath analyzer using cavity ringdown spectroscopy: An initial test with human subjects under various situations," Measurement Science and Technology, Vol. 19, No. 10, 105604, August 27, 2008, doi: 10.1088/0957-0233/19/10/105604.

    44. Bicer, A., J. Bounds, F. Zhu, A. A. Kolomenskii, N. Kaya, E. Aluauee, M. Amani, and H. A. Schuessler, "Sensitive spectroscopic analysis of biomarkers in exhaled breath," International Journal of Thermophysics, Vol. 39, No. 6, 69, April 19, 2018, doi: 10.1007/s10765-018-2389-9.

    45. Sadiek, I., Q. Shi, D. W. R. Wallace, and G. Friedrichs, "Quantitative mid-infrared cavity ringdown detection of methyl iodide for monitoring applications," Analytical Chemistry, Vol. 89, No. 16, 8445-8452, August 15, 2017, doi: 10.1021/acs.analchem.7b01970.

    46. Wang, Z., M. Sun, and C. Wang, "Detection of melanoma cancer biomarker dimethyl disulfide using cavity ringdown spectroscopy at 266 nm," Appl. Spectrosc., Vol. 70, No. 6, 1080-5, June 2016 (in English), doi: 10.1177/0003702816641575.

    47. Parkes, A. M., B. L. Fawcett, R. E. Austin, S. Nakamichi, D. E. Shallcross, and A. J. Orr-Ewing, "Trace detection of volatile organic compounds by diode laser cavity ring-down spectroscopy," Analyst, Vol. 128, No. 7, 960-965, 2003, doi: 10.1039/B303834C.

    48. Vaittinen, O., F. M. Schmidt, M. Metsala, and L. Halonen, "Exhaled breath biomonitoring using laser spectroscopy," Current Analytical Chemistry, Vol. 9, No. 3, 463-475, 2013, doi: http://dx.doi.org/10.2174/1573411011309030016.

    49. Schmidt, F. M., O. Vaittinen, M. Metsälä, P. Kraus, and L. Halonen, "Direct detection of acetylene in air by continuous wave cavity ring-down spectroscopy," Applied Physics B: Lasers and Optics, Vol. 101, 671-682, November 1, 2010, doi: 10.1007/s00340-010-4027-5.

    50. Thalman, R. and R. Volkamer, "Inherent calibration of a blue LED-CE-DOAS instrument to measure iodine oxide, glyoxal, methyl glyoxal, nitrogen dioxide, water vapour and aerosol extinction in open cavity mode," Atmos. Meas. Tech., Vol. 3, No. 6, 1797-1814, 2010, doi: 10.5194/amt-3-1797-2010.

    51. Ball, S. M., J. M. Langridge, and R. L. Jones, "Broadband cavity enhanced absorption spectroscopy using light emitting diodes," Chemical Physics Letters, Vol. 398, No. 1, 68-74, November 1, 2004, doi: https://doi.org/10.1016/j.cplett.2004.08.144.

    52. Fiedler, S. E., A. Hese, and A. A. Ruth, "Incoherent broad-band cavity-enhanced absorption spectroscopy of liquids," Review of Scientific Instruments, Vol. 76, No. 2, 023107, 2005, doi: 10.1063/1.1841872.

    53. Fiedler, S. E., A. Hese, and A. A. Ruth, "Incoherent broad-band cavity-enhanced absorption spectroscopy," Chemical Physics Letters, Vol. 371, 284-294, 2003.

    54. Islam, M., L. Ciaffoni, G. Hancock, and G. A. D. Ritchie, "Demonstration of a novel laser-driven light source for broadband spectroscopy between 170 nm and 2.1 μm," Analyst, Vol. 138, No. 17, 4741-4745, 2013, doi: 10.1039/C3AN01020A.

    55. Seetohul, L. N., Z. Ali, and M. Islam, "Liquid-phase broadband cavity enhanced absorption spectroscopy (BBCEAS) studies in a 20 cm cell," Analyst, Vol. 134, No. 9, 1887-1895, 2009, doi: 10.1039/B907316G.

    56. Wu, T., W. Chen, E. Fertein, F. Cazier, D. Dewaele, and X. Gao, "Development of an open-path incoherent broadband cavity-enhanced spectroscopy based instrument for simultaneous measurement of HONO and NO2 in ambient air," Applied Physics B, Vol. 106, No. 2, 501-509, February 1, 2012, doi: 10.1007/s00340-011-4818-3.

    57. Denzer, W., M. L. Hamilton, G. Hancock, M. Islam, C. E. Langley, R. Peverall, and G. A. D. Ritchie, "Near-infrared broad-band cavity enhanced absorption spectroscopy using a superluminescent light emitting diode," Analyst, Vol. 134, No. 11, 2220-2223, 2009, doi: 10.1039/B916807A.

    58. Chandran, S. and R. Varma, "Near infrared cavity enhanced absorption spectra of atmospherically relevant ether-1, 4-Dioxane," Spectrochim Acta A. Mol. Biomol. Spectrosc., Vol. 153, 704-8, January 15, 2016 (in English), doi: 10.1016/j.saa.2015.09.030.

    59. Denzer, W., G. Hancock, M. Islam, C. E. Langley, R. Peverall, G. A. D. Ritchie, and D. Taylor, "Trace species detection in the near infrared using Fourier transform broadband cavity enhanced absorption spectroscopy: Initial studies on potential breath analytes," Analyst, Vol. 136, No. 4, 801-806, 2011, doi: 10.1039/C0AN00462F.

    60. Amiot, C., A. Aalto, P. Ryczkowski, J. Toivonen, and G. Genty, "Cavity enhanced absorption spectroscopy in the mid-infrared using a supercontinuum source," Applied Physics Letters, Vol. 111, No. 6, 061103, 2017, doi: 10.1063/1.4985263.

    61. Fang, B., W. Zhao, X. Xu, J. Zhou, X. Ma, S. Wang, W. Zhang, D. S. Venables, and W. Chen, "Portable broadband cavity-enhanced spectrometer utilizing Kalman filtering: Application to real-time, in situ monitoring of glyoxal and nitrogen dioxide," Opt. Express, Vol. 25, No. 22, 26910-26922, October 30, 2017, doi: 10.1364/OE.25.026910.

    62. Chen, J., J. C. Wenger, and D. S. Venables, "Near-ultraviolet absorption cross sections of nitrophenols and their potential influence on tropospheric oxidation capacity," The Journal of Physical Chemistry A, Vol. 115, No. 44, 12235-12242, November 10, 2011, doi: 10.1021/jp206929r.

    63. Yi, H., et al., "Intercomparison of IBBCEAS, NitroMAC and FTIR analyses for HONO, NO2 and CH2O measurements during the reaction of NO2 with H2O vapour in the simulation chamber CESAM," Atmos. Meas. Tech., Vol. 14, No. 8, 5701-5715, 2021, doi: 10.5194/amt-14-5701-2021.

    64. Meng, L., G. Wang, P. Augustin, M. Fourmentin, Q. Gou, E. Fertein, T. N. Ba, C. Coeur, A. Tomas, and W. Chen, "Incoherent broadband cavity enhanced absorption spectroscopy (IBBCEAS)-based strategy for direct measurement of aerosol extinction in a lidar blind zone," Opt. Lett., Vol. 45, No. 7, 1611-1614, April 1, 2020, doi: 10.1364/OL.389093.

    65. Miklós, A., P. Hess, and Z. Bozóki, "Application of acoustic resonators in photoacoustic trace gas analysis and metrology," Review of Scientific Instruments, Vol. 72, No. 4, 1937-1955, 2001, doi: 10.1063/1.1353198.

    66. Dumitras, D. C., M. Petrus, A.-M. Bratu, and C. Popa, "Applications of near infrared photoacoustic spectroscopy for analysis of human respiration: A review," Molecules, Vol. 25, No. 7, 1728, 2020, online available: https://www.mdpi.com/1420-3049/25/7/1728.

    67. Harren, F., J. Mandon, and S. M. Cristescu, Photoacoustic Spectroscopy in Trace Gas Monitoring, 2012.

    68. Li, J., W. Chen, and B. Yu, "Recent progress on infrared photoacoustic spectroscopy techniques," Applied Spectroscopy Reviews, Vol. 46, No. 6, 440-471, August 1, 2011, doi: 10.1080/05704928.2011.570835.

    69. Patimisco, P., G. Scamarcio, F. Tittel, and V. Spagnolo, "Quartz-enhanced photoacoustic spectroscopy: A review," Sensors (Basel, Switzerland), Vol. 14, 6165-206, April 1, 2014, doi: 10.3390/s140406165.

    70. Popa, C. L., A. M. Bratu, and M. Petrus, "A comparative photoacoustic study of multi gases from human respiration: Mouth breathing vs. nasal breathing," Microchemical Journal, 2018.

    71. Mitrayana, D., K. Apriyanto, and M. Satriawan, "CO2 laser photoacoustic spectrometer for measuring acetone in the breath of lung cancer patients," Biosensors, Vol. 10, No. 6, 55, 2020, online available: https://www.mdpi.com/2079-6374/10/6/55.

    72. Mohebbifar, M. R., "High-sensitivity detection and quantification of CHCl3 vapors in various gas environments based on the photoacoustic spectroscopy," Microwave and Optical Technology Letters, Vol. 61, No. 9, 2234-2241, 2019, doi: https://doi.org/10.1002/mop.31880.

    73. Wang, G., T. Zhang, Y. Jiang, and S. He, "Compact photoacoustic spectrophone for simultaneously monitoring the concentrations of dichloromethane and trichloromethane with a single acoustic resonator," Opt Express, Vol. 30, No. 5, 7053-7067, February 28, 2022 (in English), doi: 10.1364/oe.450685.

    74. Zhang, T., Y. Xing, G. Wang, and S. He, "High sensitivity continuous monitoring of chloroform gas by using wavelength modulation photoacoustic spectroscopy in the near-infrared range," Applied Sciences, Vol. 11, No. 15, 6992, 2021, online available: https://www.mdpi.com/2076-3417/11/15/6992.

    75. Ma, Y., R. Lewicki, M. Razeghi, and F. K. Tittel, "QEPAS based ppb-level detection of CO and N2O using a high power CW DFB-QCL," Opt. Express, Vol. 21, No. 1, 1008-1019, January 14, 2013, doi: 10.1364/OE.21.001008.

    76. Ayache, D., W. Trzpil, R. Rousseau, K. Kinjalk, R. Teissier, A. N. Baranov, M. Bahriz, and A. Vicet, "Benzene sensing by quartz enhanced photoacoustic spectroscopy at 14.85 μm," Opt. Express, Vol. 30, No. 4, 5531-5539, February 14, 2022, doi: 10.1364/OE.447197.

    77. Ma, Y., Y. He, Y. Tong, X. Yu, and F. K. Tittel, "Quartz-tuning-fork enhanced photothermal spectroscopy for ultra-high sensitive trace gas detection," Opt. Express, Vol. 26, No. 24, 32103-32110, November 26, 2018, doi: 10.1364/OE.26.032103.

    78. Lang, Z., S. Qiao, and Y. Ma, "Acoustic microresonator based in-plane quartz-enhanced photoacoustic spectroscopy sensor with a line interaction mode," Opt. Lett., Vol. 47, No. 6, 1295-1298, March 15, 2022, doi: 10.1364/OL.452085.

    79. Liu, X. and Y. Ma, "Sensitive carbon monoxide detection based on light-induced thermoelastic spectroscopy with a fiber-coupled multipass cell (invited)," Chinese Optics Letters, Vol. 20, No. 3, 031201, 2022, doi: 10.3788/col202220.031201.

    80. Tomberg, T., M. Vainio, T. Hieta, and L. Halonen, "Sub-parts-per-trillion level sensitivity in trace gas detection by cantilever-enhanced photo-acoustic spectroscopy," Scientific Reports, Vol. 8, No. 1, 1848, January 30, 2018, doi: 10.1038/s41598-018-20087-9.

    81. Karhu, J., H. Philip, A. Baranov, R. Teissier, and T. Hieta, "Sub-ppb detection of benzene using cantilever-enhanced photoacoustic spectroscopy with a long-wavelength infrared quantum cascade laser," Opt. Lett., Vol. 45, No. 21, 5962-5965, November 1, 2020, doi: 10.1364/OL.405402.

    82. Hirschmann, C. B., N. S. Koivikko, J. Raittila, J. Tenhunen, S. Ojala, K. Rahkamaa-Tolonen, R. Marbach, S. Hirschmann, and R. L. Keiski, "FT-IR-cPAS{new photoacoustic measurement technique for analysis of hot gases: A case study on VOCs," Sensors (Basel), Vol. 11, No. 5, 5270-5289, 2011 (in English), doi: 10.3390/s110505270.

    83. Saalberg, Y., H. Bruhns, and M. Wolff, "Photoacoustic spectroscopy for the determination of lung cancer biomarkers - A preliminary investigation," Sensors, Vol. 17, No. 1, 210, 2017, online available: https://www.mdpi.com/1424-8220/17/1/210.

    84. Bacsik, Z., J. Mink, and G. Keresztury, "FTIR spectroscopy of the atmosphere. I. Principles and methods," Applied Spectroscopy Reviews, Vol. 39, No. 3, 295-363, December 31, 2004, doi: 10.1081/ASR-200030192.

    85. Lechner, B., H. Paar, and P. Sturm, "Measurement of VOCs in vehicle exhaust by extractive FTIR spectroscopy," Europto Remote Sensing. SPIE, 2001.

    86. Cantu, A., G. Pophal, S. Hall, and C. T. Laush, "A unique application of an extractive FTIR ambient air monitoring system for the simultaneous detection of multiple-ppb-level VOCs," Applied Physics B: Lasers and Optics, Vol. 67, 493-496, October 1, 1998, doi: 10.1007/s003400050534.

    87. Fathy, A., et al., "MEMS FTIR optical spectrometer enables detection of volatile organic compounds (VOCs) in part-per-billion (ppb) range for air quality monitoring," SPIE OPTO, 2019.

    88. Cheng, J., Y. Zhang, T. Wang, P. Norris, W.-Y. Chen, and W.-P. Pan, "Thermogravimetric-fourier transform infrared spectroscopy-gas chromatography/mass spectrometry study of volatile organic compounds from coal pyrolysis," Energy & Fuels, Vol. 31, No. 7, 7042-7051, July 20, 2017, doi: 10.1021/acs.energyfuels.7b01073.

    89. Flores, E., R. Basaldud, and M. Grutter, "Open-path FTIR spectroscopic studies of trace gases over mexico city," Journal of Extension, 2003.

    90. Hong, D. W., G. S. Heo, J. S. Han, and S. Y. Cho, "Application of the open path FTIR with COL1SB to measurements of ozone and VOCs in the urban area," Atmospheric Environment, Vol. 38, No. 33, 5567-5576, October 1, 2004, doi: https://doi.org/10.1016/j.atmosenv.2004.06.033.

    91. Lin, C., N. Liou, and E. Sun, "Applications of open-path fourier transform infrared for identification of volatile organic compound pollution sources and characterization of source emission behaviors," Journal of the Air & Waste Management Association, Vol. 58, No. 6, 821-828, June 1, 2008, doi: 10.3155/1047-3289.58.6.821.

    92. Russwurm, G. M., R. H. Kagann, O. A. Simpson, W. A. McClenny, and W. F. Herget, "Long-path FTIR measurements of volatile organic compounds in an industrial setting," Journal of the Air & Waste Management Association, Vol. 41, No. 8, 1062-1066, 1991.

    93. Sedlmaier, A., K. Schafer, K. H. Becker, K. Brockmann, J. Heland, R. Kurtenbach, J. Lorzer, and P. Wiesen, "Determination of VOCs in traffic exhaust by FTIR absorption spectrometry," Industrial Lasers and Inspection (EUROPTO Series). SPIE, 1999.

    94. Li, Y., J. Wang, Z. Huang, and X. Zhou, "Mapping air contaminant concentrations using remote sensing FTIR," Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, Vol. 38, No. 2, 429-38, February 2003 (in English), doi: 10.1081/ese120016905.

    95. Tong, J.-J., W.-Q. Liu, M.-G. Gao, Z.-M. Liu, L. Xu, X.-L. Wei, and L. Jin, "Measurement and study of partial VOCs based on open path FTIR," 5th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optical Test and Measurement Technology and Equipment, Vol. 7656, 76562B, Y. Zhang, J. Sasián, L. Xiang, and S. To, editors, October 1, 2010, doi: 10.1117/12.863726, online available: https://ui.adsabs.harvard.edu/abs/2010SPIE.7656E.2BT.

    96. Han, X., L. Jin, M. Gao, S. Ye, L. Xu, Y. Li, R. Hu, M. Feng, and W. Liu, "The study of VOCs emission monitoring technology based on SOF-FTIR," Light, Energy and the Environment 2015, paper EW2A.5, OSA Technical Digest (online) (Optica Publishing Group), 2015, https://doi.org/10.1364/EE.2015.EW2A.5.

    97. Buszewski, B., M. Kesy, T. Ligor, and A. Amann, "Human exhaled air analytics: biomarkers of diseases," Biomed Chromatogr, Vol. 21, No. 6, 553-566, June 2007 (in English), doi: 10.1002/bmc.835.

    98. Tomberg, T., et al., "Broadband laser-based infrared detector for gas chromatography," Analytical Chemistry, Vol. 92, No. 21, 14582-14588, November 3, 2020, doi: 10.1021/acs.analchem.0c02887.

    99. Zare, R. N., D. S. Kuramoto, C. Haase, S. M. Tan, E. R. Crosson, and N. M. Saad, "High-precision optical measurements of 13C/12C isotope ratios in organic compounds at natural abundance," Proc. Natl. Acad. Sci. USA, Vol. 106, No. 27, 10928-32, July 7, 2009 (in English), doi: 10.1073/pnas.0904230106.