Vol. 174
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2022-05-23
Comparison of Correlation Performance for Various Measurement Schemes in Quantum Bipartite Radar and Communication Systems
By
Progress In Electromagnetics Research, Vol. 174, 43-53, 2022
Abstract
Bipartite systems have become popular in emerging quantum radar and quantum communication systems. This paper analyzes the various correlation coefficients for different types of quantum radar measurement schemes, such as: (i) immediate detection of the idler photon events to be used in post-processing correlation with the signal photon events, (ii) immediate detection of the idler electric field to be used in post-processing correlation with the signal electric field, (iii) immediate detection of the idler quadratures to be used in post-processing correlation with the signal quadratures, and (iv) conventional analog correlation method of the optical parametric amplifier. The showcased results compare the performance of these different methodologies for various environmental scenarios. This work is important at developing the fundamentals behind quantum technologies that require covariance measurements and will permit more accurate selection of the appropriate measurement styles for individual systems.
Citation
Rory A. Bowell, Matthew J. Brandsema, Ram M. Narayanan, Stephen W. Howell, and Jonathan M. Dilger, "Comparison of Correlation Performance for Various Measurement Schemes in Quantum Bipartite Radar and Communication Systems," Progress In Electromagnetics Research, Vol. 174, 43-53, 2022.
doi:10.2528/PIER22022506
References

1. Luong, D., C. S. Chang, A. Vadiraj, A. Damini, C. Wilson, and B. Balaji, "Receiver operating characteristics for a prototype quantum two-mode squeezing radar," IEEE Transactions on Aerospace and Electronic Systems, Vol. 56, No. 3, 2041-2060, Jun. 2020.
doi:10.1109/TAES.2019.2951213

2. Bowell, R. A., M. J. Brandsema, B. M. Ahmed, R. M. Narayanan, S. W. Howell, and J. M. Dilger, "Electric field correlations in quantum radar and the quantum advantage," Proc. SPIE Conference on Radar Sensor Technology XXIV, Vol. 11408, Apr. 2020, doi: 10.1117/12.2562749.

3. Brandsema, M. J., R. M. Narayanan, and M. Lanzagorta, "Correlation properties of single photon binary waveforms used in quantum radar/lidar," Proc. SPIE Conference on Radar Sensor Technology XXIV, Vol. 11408, Apr. 2020, doi: 10.1117/12.2560184.

4. Chang, C. W. S., A. M. Vadiraj, J. Bourassa, B. Balaji, and C. M. Wilson, "Quantum-enhanced noise radar," Applied Physics Letters, Vol. 114, No. 11, 112601, Mar. 2019.
doi:10.1063/1.5085002

5. Lanzagorta, M., Quantum Radar, Morgan & Claypool, San Rafael, CA, USA, 2011.

6. Lopaeva, E. D., I. Ruo Berchera, I. P. Degiovanni, S. Olivares, G. Brida, and M. Genovese, "Experimental realization of quantum illumination," Physical Review Letters, Vol. 110, No. 15, 153603, Apr. 2013.
doi:10.1103/PhysRevLett.110.153603

7. Barzanjeh, S., S. Guha, C. Weedbrook, D. Vitali, J. H. Shapiro, and S. Pirandola, "Microwave quantum illumination," Physical Review Letters, Vol. 114, No. 8, 080503, Feb. 2015.
doi:10.1103/PhysRevLett.114.080503

8. Shapiro, J. H., "The quantum illumination story," IEEE Aerospace and Electronic Systems Magazine, Vol. 35, No. 4, 8-20, Apr. 2020.
doi:10.1109/MAES.2019.2957870

9. Bowell, R. A., M. J. Brandsema, R. M. Narayanan, S. W. Howell, and J. M. Dilger, "Tripartite correlation performance for use in quantum radar systems," Proc. SPIE Conference on Radar Sensor Technology XV, Vol. 11742, Apr. 2021, doi: 10.1117/12.2588308.

10. Lanzagorta, M., "Low-brightness quantum radar," Proc. SPIE Conference on Radar Sensor Technology XIX and Active and Passive Signatures VI, Vol. 9461, Baltimore, MD, Apr. 2015, doi: 10.1117/12.2177577.

11. Guha, S., "Receiver design to harness the quantum illumination advantage," Proc. 2009 IEEE International Symposium on Information Theory (ISIT), 963-967, Seoul, Korea, Jun.-Jul. 2009.

12. Zhuang, Q. and J. H. Shapiro, "Ultimate accuracy limit of quantum pulse-compression ranging,", arXiv:2109.11079v1, Sep. 2021.

13. Blakely, J. N., "Bounds on probability of detection error in quantum-enhanced noise radar," Quantum Reports, Vol. 2, No. 3, 400-413, Jul. 2020.
doi:10.3390/quantum2030028

14. Tan, S.-H., B. I. Erkmen, V. Giovannetti, S. Guha, S. Lloyd, L. Maccone, S. Pirandola, and J. H. Shapiro, "Quantum illumination with Gaussian states," Physical Review Letters, Vol. 101, No. 25, 253601, Dec. 2008.
doi:10.1103/PhysRevLett.101.253601

15. Dawood, M. and R. M. Narayanan, "Receiver operating characteristics for the coherent UWB random noise radar," IEEE Transactions on Aerospace and Electronic Systems, Vol. 37, No. 2, 586-594, Apr. 2001.
doi:10.1109/7.937470

16. Luong, D., B. Balaji, and S. Rajan, "Biomedical sensing using quantum radars based on Josephson parametric amplifiers," Proc. 2021 International Applied Computational Electromagnetics Society Symposium (ACES), Hamilton, ON, Aug. 2021, doi: 10.1109/ACES53325.2021.00091.

17. Russer, J. A., M. Wurth, W. Utschick, F. Bischeltsrieder, and M. Peichl, "Performance considerations for quantum radar," Proc. 2021 International Applied Computational Electromagnetics Society Symposium (ACES), Hamilton, ON, Aug. 2021, doi: 10.1109/ACES53325.2021.00105.

18. Luong, D., S. Rajan, and B. Balaji, "Quantum two-mode squeezing radar and noise radar: Correlation coefficients for target detection," IEEE Sensors Journal, Vol. 20, No. 10, 5221-5228, May 2020.
doi:10.1109/JSEN.2020.2971851

19. Liu, H., B. Balaji, and A. S. Helmy, "Target detection aided by quantum temporal correlations: Theoretical analysis and experimental validation," IEEE Transactions on Aerospace and Electronic Systems, Vol. 56, No. 5, 3529-3544, Oct. 2020.
doi:10.1109/TAES.2020.2974054

20. Yang, H., W. Roga, J. D. Pritchard, and J. Jeffers, "Gaussian state-based quantum illumination with simple photodetection," Optics Express, Vol. 29, No. 6, 8199-8215, Mar. 2021.
doi:10.1364/OE.416151

21. England, D. G., B. Balaji, and B. J. Sussman, "Quantum-enhanced standoff detection using correlated photon pairs," Physical Review A, Vol. 99, 023828, Feb. 2019.
doi:10.1103/PhysRevA.99.023828

22. Scully, M. O. and M. S. Zubairy, Quantum Optics, Cambridge University Press, Cambridge, UK, 1997.
doi:10.1017/CBO9780511813993

23. Vourdas, A., "Optical signals with thermal noise," Physical Review A, Vol. 39, No. 1, 206-213, Jan. 1989.
doi:10.1103/PhysRevA.39.206

24. Helstrom, C. W., Quantum Detection and Estimation Theory, Academic Press, New York, NY, USA, 1976.

25. Griffiths, D. J. and D. F. Schroeter, Introduction to Quantum Mechanics, 3rd Ed., Cambridge University Press, Cambridge, UK, 2018.
doi:10.1017/9781316995433

26. Guha, S. and B. I. Erkmen, "Gaussian-state quantum illumination receivers for target detection," Physical Review A, Vol. 80, No. 5, 052310, Nov. 2009.
doi:10.1103/PhysRevA.80.052310

27. Ahmed, B. M., M. J. Brandsema, R. A. Bowell, R. M. Narayanan, S. W. Howell, and J. M. Dilger, "Remote sensing performance enhancement due to quantum+classical cooperative sensor," Proc. SPIE Conference on Radar Sensor Technology XXIV, Vol. 11408, Apr. 2020, doi: 10.1117/12.2562739.

28. Zhang, Z., S. Mouradian, F. N. Wong, and J. H. Shapiro, "Entanglement-enhanced sensing in a lossy and noisy environment," Physical Review Letters, Vol. 114, No. 11, 110506, Mar. 2015.
doi:10.1103/PhysRevLett.114.110506