Vol. 174

Latest Volume
All Volumes
All Issues

TDFA-Band Silicon Optical Variable Attenuator

By Maoliang Wei, Hui Ma, Chunlei Sun, Chuyu Zhong, Yuting Ye, Peng Zhang, Ruonan Liu, Junying Li, Lan Li, Bo Tang, and Hongtao Lin
Progress In Electromagnetics Research, Vol. 174, 33-42, 2022


TDFA-band (2-μm waveband) has been considered as a promising optical window for the next generation of optical communication and computing. Absorption modulation, one of the fundamental reconfigurable manipulations, is essential for large-scale photonic integrated circuits. However, few efforts have been involved in exploring absorption modulation at TDFA-band. In this work, variable optical attenuators (VOAs) for TDFA-band wavelengths were designed and fabricated based on a silicon-on-insulator (SOI) platform. By embedding a short PIN junction length of 200 μm into the waveguide, the fabricated VOA exhibits a high modulation depth of 40.49 dB at 2.2 V and has a fast response time (10 ns) induced by the plasma dispersion effect. Combining the Fabry-Perot cavity effect and plasma dispersion effect of silicon, the attenuator could achieve a maximum attenuation of more than 50 dB. These results promote the 2-μm waveband silicon photonic integration and are expected to the future use of photonic attenuators in crosstalk suppression, optical modulation, and optical channel equalization.


Maoliang Wei, Hui Ma, Chunlei Sun, Chuyu Zhong, Yuting Ye, Peng Zhang, Ruonan Liu, Junying Li, Lan Li, Bo Tang, and Hongtao Lin, "TDFA-Band Silicon Optical Variable Attenuator," Progress In Electromagnetics Research, Vol. 174, 33-42, 2022.


    1. Shen, W., J. Du, L. Sun, C. Wang, Y. Zhu, K. Xu, B. Chen, and Z. He, "Low-latency and high-speed hollow-core fiber optical interconnection at 2-micron waveband," Journal of Lightwave Technology, Vol. 38, No. 15, 3874-3882, 2020.

    2. Li, Z., A. M. Heidt, J. M. O. Daniel, Y. Jung, S. U. Alam, and D. J. Richardson, "Thulium-doped fiber amplifier for optical communications at 2 μm," Optics Express, Vol. 21, No. 8, 9289-9297, 2013.

    3. Soref, R., "Mid-infrared photonics in silicon and germanium," Nature Photonics, Vol. 4, No. 8, 495-497, 2010.

    4. Soref, R., "Enabling 2 μm communications," Nature Photonics, Vol. 9, No. 6, 358-359, 2015.

    5. Takenaka, M., Z. Zhao, C. P. Ho, T. Fujigaki, K. Toprasertpong, and S. Takagi, "Germanium mid-infrared integrated photonics on geoi platform," Conference on Lasers and Electro-Optics, Optical Society of America, San Jose, California, 2021.

    6. Zhao, Z., C. P. Ho, Q. Li, Z. Lin, K. Toprasertpong, S. Takagi, and M. Takenaka, "Efficient mid-infrared germanium variable optical attenuator fabricated by spin-on-glass doping," Journal of Lightwave Technology, Vol. 38, No. 17, 4808-4816, 2020.

    7. Kang, J., M. Takenaka, and S. Takagi, "Novel Ge waveguide platform on Ge-on-insulator wafer for mid-infrared photonic integrated circuits," Optics Express, Vol. 24, No. 11, 11855-11864, 2016.

    8. Li, X., J. X. B. Sia, W. Wang, Z. Qiao, X. Guo, G. I. Ng, Y. Zhang, Z. Niu, C. Tong, H. Wang, and C. Liu, "Phase noise reduction of a 2 μm passively mode-locked laser through hybrid III-V/silicon integration," Optica, Vol. 8, No. 6, 855-860, 2021.

    9. Shen, W., P. Zeng, Z. Yang, D. Xia, J. Du, B. Zhang, K. Xu, Z. He, and Z. Li, "Chalcogenide glass photonic integration for improved 2 μm optical interconnection," Photonics Research, Vol. 8, No. 9, 1484-1490, 2020.

    10. Lin, H., Y. Song, Y. Huang, D. Kita, S. Deckoff-Jones, K. Wang, L. Li, J. Li, H. Zheng, Z. Luo, H. Wang, S. Novak, A. Yadav, C.-C. Huang, R.-J. Shiue, D. Englund, T. Gu, D. Hewak, K. Richardson, J. Kong, and J. Hu, "Chalcogenide glass-on-graphene photonics," Nature Photonics, Vol. 11, No. 12, 798-805, 2017.

    11. Han, Z., P. Lin, V. Singh, L. Kimerling, J. Hu, K. Richardson, A. Agarwal, and D. T. H. Tan, "On-chip mid-infrared gas detection using chalcogenide glass waveguide," Applied Physics Letters, Vol. 108, No. 14, 141106, 2016.

    12. Sadiq, M. U., H. Zhang, J. O. Callaghan, B. Roycroft, N. Kavanagh, K. Thomas, A. Gocalinska, Y. Chen, T. Bradley, J. R. Hayes, Z. Li, S. U. Alam, F. Poletti, M. N. Petrovich, D. J. Richardson, E. Pelucchi, P. O. Brien, F. H. Peters, F. Gunning, and B. Corbett, "40 Gb/s WDM transmission over 1.15-km HC-PBGF using an InP-based Mach-Zehnder modulator at 2 μm," Journal of Lightwave Technology, Vol. 34, No. 8, 1706-1711, 2016.

    13. Yang, C.-A., S.-W. Xie, Y. Zhang, J.-M. Shang, S.-S. Huang, Y. Yuan, F.-H. Shao, Y. Zhang, Y.-Q. Xu, and Z.-C. Niu, "High-power, high-spectral-purity GaSb-based laterally coupled distributed feedback lasers with metal gratings emitting at 2 μm," Applied Physics Letters, Vol. 114, No. 1, 021102, 2019.

    14. Wang, R., S. Sprengel, G. Boehm, R. Baets, M.-C. Amann, and G. Roelkens, "Broad wavelength coverage 2.3 μm III-V-on-silicon DFB laser array," Optica, Vol. 4, No. 8, 972-975, 2017.

    15. Ackert, J. J., D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, "High-speed detection at two micrometres with monolithic silicon photodiodes," Nature Photonics, Vol. 9, No. 6, 393-396, 2015.

    16. Cao, W., D. Hagan, D. J. Thomson, M. Nedeljkovic, C. G. Littlejohns, A. Knights, S.-U. Alam, J.Wang, F. Gardes, W. Zhang, S. Liu, K. Li, M. S. Rouifed, G. Xin, W. Wang, H. Wang, G. T. Reed, and G. Z. Mashanovich, "High-speed silicon modulators for the 2 μm wavelength band," Optica, Vol. 5, No. 9, 1055-1062, 2018.

    17. Hattasan, N., B. Kuyken, F. Leo, E. M. P. Ryckeboer, D. Vermeulen, and G. Roelkens, "High-efficiency SOI fiber-to-chip grating couplers and low-loss waveguides for the short-wave infrared," IEEE Photonics Technology Letters, Vol. 24, No. 17, 1536-1538, 2012.

    18. Ma, H., H. Yang, B. Tang, M. Wei, J. Li, J. Wu, P. Zhang, C. Sun, L. Li, and H. Lin, "Passive devices at 2 μm wavelength on 200mm CMOS-compatible silicon photonics platform [Invited]," Chinese Optics Letters, Vol. 19, No. 7, 071301, 2021.

    19. Zhong, C., H. Ma, C. Sun, M. Wei, Y. Ye, B. Tang, P. Zhang, R. Liu, J. Li, L. Li, and H. Lin, "Fast thermo-optical modulators with doped-silicon heaters operating at 2 μm," Optics Express, Vol. 29, No. 15, 23508-23516, 2021.

    20. Wang, Z., Y. Liu, Z. Wang, Y. Liu, J. Du, Q. Song, and K. Xu, "Ultra-broadband 3 dB power splitter from 1.55 to 2 μm wave band," Optics Letters, Vol. 46, No. 17, 4232-4235, 2021.

    21. Guo, J., J. Li, C. Liu, Y. Yin, W. Wang, Z. Ni, Z. Fu, H. Yu, Y. Xu, Y. Shi, Y. Ma, S. Gao, L. Tong, and D. Dai, "High-performance silicon-graphene hybrid plasmonic waveguide photodetectors beyond 1.55 μm," Light: Science & Applications, Vol. 9, No. 1, 29, 2020.

    22. Duan, F., K. Chen, D. Chen, and Y. Yu, "Low-power and high-speed 2×2 thermo-optic MMI-MZI switch with suspended phase arms and heater-on-slab structure," Optics Letters, Vol. 46, No. 1, 234-237, 2021.

    23. Jain, P., A. K. Singh, J. K. Pandey, S. Bansal, N. Sardana, S. Kumar, N. Gupta, and A. K. Singh, "An ultrathin compact polarization-sensitive triple-band microwave metamaterial absorber," Journal of Electronic Materials, Vol. 50, No. 3, 1506-1513, 2021.

    24. Jain, P., A. K. Singh, J. K. Pandey, S. Garg, S. Bansal, M. Agarwal, S. Kumar, N. Sardana, N. Gupta, and A. K. Singh, "Ultra-thin metamaterial perfect absorbers for single-/dual-/multi-band microwave applications," IET Microwaves, Antennas & Propagation, Vol. 14, No. 5, 390-396, 2020.

    25. Ros, C., N. Youngblood, Z. Cheng, M. Le Gallo, H. P. Pernice Wolfram, C. D. Wright, A. Sebastian, and H. Bhaskaran, "In-memory computing on a photonic platform," Science Advances, Vol. 5, No. 1, eaau5759, 2019.

    26. Cheng, Z. G., C. Rios, W. H. P. Pernice, C. D. Wright, and H. Bhaskaran, "On-chip photonic synapse," Science Advances, Vol. 3, No. 9, e1700160, 2017.

    27. Feldmann, J., N. Youngblood, M. Karpov, H. Gehring, X. Li, M. Stappers, M. Le Gallo, X. Fu, A. Lukashchuk, A. S. Raja, J. Liu, C. D. Wright, A. Sebastian, T. J. Kippenberg, W. H. P. Pernice, and H. Bhaskaran, "Parallel convolutional processing using an integrated photonic tensor core," Nature, Vol. 589, No. 7840, 52-58, 2021.

    28. Sun, C., M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanovic, R. J. Ram, M. A. Popovic, and V. M. Stojanovic, "Single-chip microprocessor that communicates directly using light," Nature, Vol. 528, No. 7583, 534-538, 2015.

    29. Zhang, W. and J. Yao, "A fully reconfigurable waveguide Bragg grating for programmable photonic signal processing," Nature Communications, Vol. 9, No. 1, 1396, 2018.

    30. Zhang, W. and J. Yao, "Photonic integrated field-programmable disk array signal processor," Nature Communications, Vol. 11, No. 1, 406, 2020.

    31. Feldmann, J., N. Youngblood, X. Li, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, "Integrated 256 cell photonic phase-change memory with 512-bit capacity," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 26, No. 1, 1-7, 2020.

    32. Shen, Y., N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, "Deep learning with coherent nanophotonic circuits," Nature Photonics, Vol. 11, No. 7, 441-446, 2017.

    33. Feldmann, J., N. Youngblood, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, "All-optical spiking neurosynaptic networks with self-learning capabilities," Nature, Vol. 569, No. 7755, 208-214, 2019.

    34. Wu, C., H. Yu, S. Lee, R. Peng, I. Takeuchi, and M. Li, "Programmable phase-change metasurfaces on waveguides for multimode photonic convolutional neural network," Nature Communications, Vol. 12, No. 1, 96, 2021.

    35. Xu, S., J. Wang, H. Shu, Z. Zhang, S. Yi, B. Bai, X. Wang, J. Liu, and W. Zou, "Optical coherent dot-product chip for sophisticated deep learning regression," Light: Science & Applications, Vol. 10, No. 1, 221, 2021.

    36. Xu, X., L. Zhu, W. Zhuang, D. Zhang, P. Yuan, and L. Lu, "Photoelectric hybrid convolution neural network with coherent nanophotonic circuits," Optical Engineering, Vol. 60, No. 11, 2021.

    37. Kang, G., C.-H. Youn, K. Yu, H.-H. Park, S.-H. Kim, J.-B. You, D.-S. Lee, H. Yoon, Y.-G. Ha, J.-H. Kim, D.-E. Yoo, and D.-W. Lee, "Silicon-based optical phased array using electro-optic p-i-n phase shifters," IEEE Photonics Technology Letters, Vol. 31, No. 21, 1685-1688, 2019.

    38. Miller, S. A., Y.-C. Chang, C. T. Phare, M. C. Shin, M. Zadka, S. P. Roberts, B. Stern, X. Ji, A. Mohanty, O. A. Jimenez Gordillo, U. D. Dave, and M. Lipson, "Large-scale optical phased array using a low-power multi-pass silicon photonic platform," Optica, Vol. 7, No. 1, 3-6, 2020.

    39. Teodoro, G., S. Hamed, S. Tae Joon, H. Sangyoon, C. W. Ming, and Q. Niels, "Silicon photonic MEMS variable optical attenuator," Proc. SPIE, 2018.

    40. El-Fiky, E., M. Jacques, A. Samani, L. H. Xu, M. G. Saber, and D. V. Plant, "C-band and O-band silicon photonic based low-power variable optical attenuators," IEEE Photonics Journal, Vol. 11, No. 4, 2019.

    41. Wang, X., W. Shen, W. Li, Y. Liu, Y. Yao, J. Du, Q. Song, and K. Xu, "High-speed silicon photonic Mach-Zehnder modulator at 2 μm," Photonics Research, Vol. 9, No. 4, 535-540, 2021.

    42. Shen, L., M. Huang, S. Zheng, L. Yang, X. Peng, X. Cao, S. Li, and J. Wang, "High-performance silicon 2×2 thermo-optic switch for the 2 μm wavelength band," IEEE Photonics Journal, Vol. 11, No. 4, 1-6, 2019.

    43. Shen, W., J. Du, K. Xu, and Z. He, "On-chip selective dual-mode switch for 2-μm wavelength high-speed optical interconnection," IEEE Photonics Technology Letters, Vol. 33, No. 10, 483-486, 2021.

    44. Dong, P., W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, "Thermally tunable silicon racetrack resonators with ultralow tuning power," Optics Express, Vol. 18, No. 19, 20298-20304, 2010.

    45. Nedeljkovic, M., R. Soref, and G. Z. Mashanovich, "Free-carrier electrorefraction and electroabsorption modulation predictions for silicon over the 1-14 μm infrared wavelength range," IEEE Photonics Journal, Vol. 3, No. 6, 1171-1180, 2011.

    46. Reed, G. T., G. Mashanovich, F. Y. Gardes, and D. J. Thomson, "Silicon optical modulators," Nature Photonics, Vol. 4, No. 8, 518-526, 2010.

    47. Thomson, D. J., L. Shen, J. J. Ackert, E. Huante-Ceron, A. P. Knights, M. Nedeljkovic, A. C. Peacock, and G. Z. Mashanovich, "Optical detection and modulation at 2 μm-2.5 μm in silicon," Optics Express, Vol. 22, No. 9, 10825-10830, 2014.

    48. Baba, T., S. Akiyama, M. Imai, and T. Usuki, "25-Gb/s broadband silicon modulator with 0.31-V.cm VπL based on forward-biased PIN diodes embedded with passive equalizer," Optics Express, Vol. 23, No. 26, 32950-32960, 2015.