Vol. 172

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2021-12-31

Wideband High-Reflection Chiral Dielectric Metasurface

By Zhipeng Hu, Nan He, Yuwei Sun, Yi Jin, and Sailing He
Progress In Electromagnetics Research, Vol. 172, 51-60, 2021
doi:10.2528/PIER21121903

Abstract

Compared to natural materials, artificial subwavelength structures can enhance chiroptical effects in a stronger way, and the requirement of low material loss and wideband operation is desired in many situations. Here, we propose an all-dielectric chiral metasurface as a periodic array of centrosymmetric staggered silicon cuboid pairs to achieve strong circular dichroism in a wide band. As a demonstration, the designed chiral metasurface may strongly reflect the chosen circularly polarized light with the spin preserved in the operating wavelength range of 1.51~1.60 um while highly transmit (with an efficiency greater than 95%) the opposite circularly polarized light with the spin flipped. Then, two application cases are given for the designed chiral metasurface. A flat chiral meta-lens is constructed to produce wideband focusing in the transmission/reflection side while the disturbing from the opposite circular polarization is well blocked by high reflection/transmission. A chiral Fabry-Perot cavity is also constructed, which has an extremely high quality factor (2.1E4). The proposed method provides an efficient way to produce strong chiroptical effects and has a promising potential for various applications such as signal processing, sensing, radiation and detection.

Citation


Zhipeng Hu, Nan He, Yuwei Sun, Yi Jin, and Sailing He, "Wideband High-Reflection Chiral Dielectric Metasurface," Progress In Electromagnetics Research, Vol. 172, 51-60, 2021.
doi:10.2528/PIER21121903
http://jpier.org/PIER/pier.php?paper=21121903

References


    1. Ben-Moshe, A., B. M. Maoz, A. O. Govorov, and G. Markovich, "Chirality and chiroptical effects in inorganic nanocrystal systems with plasmon and exciton resonances," Chemical Society Reviews, Vol. 42, No. 16, 7028-7041, 2013.
    doi:10.1039/c3cs60139k

    2. Collins, J. T., C. Kuppe, D. C. Hooper, C. Sibilia, M. Centini, and V. K. Valev, "Chirality and chiroptical effects in metal nanostructures: Fundamentals and current trends," Advanced Optical Materials, Vol. 5, No. 16, 1700182, 2017.
    doi:10.1002/adom.201700182

    3. Valev, V. K., J. J. Baumberg, C. Sibilia, and T. Verbiest, "Chirality and chiroptical effects in plasmonic nanostructures: Fundamentals, recent progress, and outlook," Advanced Materials, Vol. 25, No. 18, 2517-2534, 2013.
    doi:10.1002/adma.201205178

    4. Tang, Y. Q. and A. E. Cohen, "Optical chirality and its interaction with matter," Physical Review Letters, Vol. 104, No. 16, 163901, 2010.
    doi:10.1103/PhysRevLett.104.163901

    5. Zhao, Y., A. N. Askarpour, L. Sun, J. Shi, X. Li, and A. Alù, "Chirality detection of enantiomers using twisted optical metamaterials," Nature Communications, Vol. 8, No. 1, 14180, 2017.
    doi:10.1038/ncomms14180

    6. Khanikaev, A. B., N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, and M. A. Belkin, "Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials," Nature Communications, Vol. 7, No. 1, 12045, 2016.
    doi:10.1038/ncomms12045

    7. Poulikakos, L. V., P. Thureja, A. Stollmann, E. D. Leo, and D. J. Norris, "Chiral light design and detection inspired by optical antenna theory," Nano Letters, Vol. 18, No. 8, 4633-4640, 2018.
    doi:10.1021/acs.nanolett.8b00083

    8. Lin, C. Y., C. C. Liu, Y. Y. Chen, K. Y. Chiu, J. D. Wu, B. L. Lin, H. W. Chang, Y. F. Chen, S. H. Chang, and Y. C. Chang, "Molecular chirality detection with periodic arrays of three-dimensional twisted metamaterials," ACS Applied Materials & Interfaces, Vol. 13, No. 1, 1152-1157, 2021.
    doi:10.1021/acsami.0c16256

    9. Gansel, J. K., M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. V. Freymann, S. Linden, and M. Wegener, "Gold helix photonic metamaterial as broadband circular polarizer," Science, Vol. 325, No. 5947, 1513-1515, 2009.
    doi:10.1126/science.1177031

    10. Esposito, M., V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, "Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies," ACS Photonics, Vol. 2, No. 1, 105-114, 2015.
    doi:10.1021/ph500318p

    11. Tseng, M. L., Z. H. Lin, H. Y. Kuo, T. T. Huang, Y. T. Huang, T. L. Chung, C. H. Chu, J. S. Huang, and D. P. Tsai, "Stress-induced 3D chiral fractal metasurface for enhanced and stabilized broadband near-field optical chirality," Advanced Optical Materials, Vol. 7, No. 15, 1900617, 2019.
    doi:10.1002/adom.201900617

    12. Fedotov, V. A., P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, "Asymmetric propagation of electromagnetic waves through a planar chiral structure," Physical Review Letters, Vol. 97, No. 16, 167401, 2006.
    doi:10.1103/PhysRevLett.97.167401

    13. Fedotov, V. A., A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, "Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures," Nano Letters, Vol. 7, No. 7, 1996-1999, 2007.
    doi:10.1021/nl0707961

    14. Schwanecke, A. S., V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, "Nanostructured metal film with asymmetric optical transmission," Nano Letters, Vol. 8, No. 9, 2940-2943, 2008.
    doi:10.1021/nl801794d

    15. Najafabadi, A. F. and T. Pakizeh, "Optical absorbing origin of chiroptical activity in planar plasmonic metasurfaces," Scientific Reports, Vol. 7, No. 1, 10251, 2017.
    doi:10.1038/s41598-017-10532-6

    16. Ye, W., X. Yuan, C. Guo, J. Zhang, and Z. Shuang, "Large chiroptical effects in planar chiral metamaterials," Physical Review Applied, Vol. 7, No. 5, 54003, 2017.
    doi:10.1103/PhysRevApplied.7.054003

    17. Ullah, H., A. Abudukelimu, Y. Qu, Y. Bai, T. Aba, and Z. Zhang, "Giant circular dichroism of chiral l-shaped nanostructure coupled with achiral nanorod: Anomalous behavior of multipolar and dipolar resonant modes," Nanotechnology, Vol. 31, No. 27, 275205, 2020.
    doi:10.1088/1361-6528/ab84a1

    18. Kong, X. T., L. K. Khorashad, Z. Wang, and A. O. Govorov, "Photothermal circular dichroism induced by plasmon resonances in chiral metamaterial absorbers and bolometers," Nano Letters, Vol. 18, No. 3, 2001-2008, 2018.
    doi:10.1021/acs.nanolett.7b05446

    19. Chen, X., L. Huang, H. Muhlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, "Dual-polarity plasmonic metalens for visible light," Nature Communications, Vol. 3, No. 1, 1198, 2012.
    doi:10.1038/ncomms2207

    20. Ma, Z., Y. Li, L. Yang, Y. Gong, and M. Hong, "All-dielectric planar chiral metasurface with gradient geometric phase," Optics Express, Vol. 26, No. 5, 6067-6078, 2018.
    doi:10.1364/OE.26.006067

    21. Solomon, M. L., A. A. E. Saleh, L. V. Poulikakos, J. M. Abendroth, and J. A. Dionne, "Nanophotonic platforms for chiral sensing and separation," Accounts of Chemical Research, Vol. 53, No. 3, 588-598, 2020.
    doi:10.1021/acs.accounts.9b00460

    22. Rana, A. S., I. Kim, M. A. Ansari, M. S. Anwar, and J. Rho, "Planar achiral metasurfaces-induced anomalous chiroptical effect of optical spin isolation," ACS Applied Materials & Interfaces, Vol. 12, No. 43, 48899-48909, 2020.
    doi:10.1021/acsami.0c10006

    23. Semnani, B., J. Flannery, R. A. Maruf, and M. Bajcsy, "Spin-preserving chiral photonic crystal mirror," Light-Science & Applications, Vol. 9, No. 1, 23, 2020.
    doi:10.1038/s41377-020-0256-5

    24. Chen, C., S. Gao, W. Song, H. Li, and T. Li, "Metasurfaces with planar chiral meta-atoms for spin light manipulation," Nano Letters, Vol. 21, No. 4, 1815-1821, 2021.
    doi:10.1021/acs.nanolett.0c04902

    25. Wang, S., Z. L. Deng, Y. Wang, Q. Zhou, X. Wang, Y. Cao, B. O. Guan, S. Xiao, and X. Li, "Arbitrary polarization conversion dichroism metasurfaces for all-in-one full poincaré sphere polarizers," Light-Science & Applications, Vol. 10, No. 1, 24, 2021.
    doi:10.1038/s41377-021-00468-y

    26. Hu, J. P., C. Zhang, Y. G. Dong, A. J. Zeng, and C. H. Wang, "High efficiency all-dielectric pixelated metasurface for near-infrared full-stokes polarization detection," Photonics Research, Vol. 9, No. 4, 4000583, 2021.
    doi:10.1364/PRJ.416342

    27. Li, J., J. T. Li, C. L. Zheng, Y. Yang, Z. Yue, X. R. Hao, H. L. Zhao, F. Y. Li, T. T. Tang, L. Wu, J. N. Li, Y. T. Zhang, and J. Q. Yao, "Lossless dielectric metasurface with giant intrinsic chirality for terahertz wave," Opt. Express, Vol. 29, 28329-28337, 2021.
    doi:10.1364/OE.430033

    28. Plum, E. and N. I. Zheludev, "Chiral mirrors," Applied Physics Letters, Vol. 106, No. 22, 775-388, 2015.
    doi:10.1063/1.4921969

    29. Solomon, M. L., A. A. E. Saleh, L. V. Poulikakos, J. M. Abendroth, and J. A. Dionne, "Nanophotonic platforms for chiral sensing and separation," Accounts of Chemical Research, Vol. 53, No. 3, 588-598, 2020.
    doi:10.1021/acs.accounts.9b00460

    30. Bochenkov, V. E. and T. I. Shabatina, "Chiral plasmonic biosensors," Biosensors, Vol. 8, No. 4, 120, 2018.
    doi:10.3390/bios8040120

    31. Collett, A. E., Field Guide to Polarization, SPIE Press, Bellingham, WA, 2005.
    doi:10.1117/3.626141

    32. Karagodsky, V., F. G. Sedgwick, and C. J. Chang-Hasnain, "Theoretical analysis of subwavelength high contrast grating reflectors," Optics Express, Vol. 18, No. 16, 16973-16988, 2010.
    doi:10.1364/OE.18.016973