Vol. 172

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Tunable High-Q Plasmonic Metasurface with Multiple Surface Lattice Resonances (Invited)

By Nanxuan Wu, Yiyun Zhang, Hongbin Ma, Hongsheng Chen, and Haoliang Qian
Progress In Electromagnetics Research, Vol. 172, 23-32, 2021


Micro-nano opto-electronic devices are demanded to be highly efficient and capable of multiple working wavelengths in several light-matter interaction applications, which is a challenge to surface plasmonics owing to the relatively higher intrinsic loss and larger dispersion. To cross the barriers, a plasmonic metasurface combining both high Q-factors (highest Q > 800) and multiple resonant wavelengths is proposed by arranging step-staged pyramid units in lattice modes. Different numerical relations for nonlinear frequency conversions have been constructed because of its strong tunability. Also, characteristics of high radiation efficiency (> 50%) and largelocalized optical density of state (> 104) have been proved through the numerical simulation. Such tunable high-Q metasurface can be implemented to quantum nonlinear process and enable the strong light-matter interaction devices into reality.


Nanxuan Wu, Yiyun Zhang, Hongbin Ma, Hongsheng Chen, and Haoliang Qian, "Tunable High-Q Plasmonic Metasurface with Multiple Surface Lattice Resonances (Invited)," Progress In Electromagnetics Research, Vol. 172, 23-32, 2021.


    1. Fernández-Domínguez, A., A., F. Garcia-Vidal, and L. Martín-Moreno, "Unrelenting plasmons," Nat. Photonics, Vol. 11, 8-10, 2017.

    2. De Bruijn, H. E., R. P. H. Kooyman, and J. Greve, "Choice of metal and wavelength for surface-plasmon resonance sensors: Some considerations," Appl. Opt., Vol. 31, 440-442, 1992.

    3. Arbabi, A., et al., "Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations," Nat. Commun., Vol. 7, 13682, 2016.

    4. Li, L., et al., "Metalens-array-based high-dimensional and multiphoton quantum source," Science, Vol. 368, 1487-1490, 2020.

    5. Yu, N. and F. Capasso, "Flat optics with designer metasurfaces," Nat. Mater., Vol. 13, 139-150, 2014.

    6. Kelly, K. L., E. Coronado, L. L. Zhao, and G. C. Schatz, "The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment," J. Phys. Chem. B, Vol. 107, 668-677, 2003.

    7. Liu, H. and P. Lalanne, "Microscopic theory of the extraordinary optical transmission," Nature, Vol. 452, 728-731, 2008.

    8. Zhao, Y. and A. Alù, "Manipulating light polarization with ultrathin plasmonic metasurfaces," Phys. Rev. B, Vol. 84, 205428, 2011.

    9. Karimi, E., et al., "Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface," Light Sci. Appl., Vol. 3, e167, 2014.

    10. Alipour, A., A. Farmani, and A. Mir, "High sensitivity and tunable nanoscale sensor based on plasmon-induced transparency in plasmonic metasurface," IEEE Sens. J., Vol. 18, 7047-7054, 2018.

    11. Vaskin, A., R. Kolkowski, A. F. Koenderink, and I. Staude, "Light-emitting metasurfaces," Nanophotonics, Vol. 8, 1151-1198, 2019.

    12. Kamali, S. M., E. Arbabi, A. Arbabi, and A. Faraon, "A review of dielectric optical metasurfaces for wavefront control," Nanophotonics, Vol. 7, 1041-1068, 2018.

    13. Emani, N. K., et al., "High-efficiency and low-loss gallium nitride dielectric metasurfaces for nanophotonics at visible wavelengths," Appl. Phys. Lett., Vol. 111, 221101, 2017.

    14. Purcell, E. M., Confined Electrons and Photons: New Physics and Applications, 839, E. Burstein and C. Weisbuch, Springer US, Boston, MA, 1995.

    15. Schuller, J. A., et al., "Plasmonics for extreme light concentration and manipulation," Nat. Mater., Vol. 9, 193-204, 2010.

    16. Agio, M. and D. M. Cano, "The Purcell factor of nanoresonators," Nat. Photonics, Vol. 7, 674-675, 2013.

    17. Boriskina, S. V., T. A. Cooper, L. Zeng, G. W. Ni, and C. Gang, "Losses in plasmonics: From mitigating energy dissipation to embracing loss-enabled functionalities," Adv. Opt. Photonics, Vol. 9, 775-827, 2017.

    18. Aouani, H., et al., "Multiresonant broadband optical antennas as efficient tunable nanosources of second harmonic light," Nano Lett., Vol. 12, 4997-5002, 2012.

    19. Walmsley, I. A., "Quantum optics: Science and technology in a new light," Science, Vol. 348, 525-530, 2015.

    20. Zhang, Q., S. T. Ha, X. Liu, T. C. Sum, and Q. Xiong, "Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers," Nano Lett., Vol. 14, 5995-6001, 2014.

    21. Chen, J., F. Gan, Y. Wang, and G. Li, "Plasmonic sensing and modulation based on fano resonances," Adv. Opt. Photonics, Vol. 6, 1701152, 2018.

    22. Ma, R., R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, "Room-temperature sub-diffraction-limited plasmon laser by total internal reflection," Nat. Mater., Vol. 10, 110-113, 2011.

    23. Kravets, V. G., A. V. Kabashin, W. L. Barnes, and A. N. Grigorenko, "Plasmonic surface lattice resonances: A review of properties and applications," Chem. Rev., Vol. 118, 5912-5951, 2018.

    24. Bin-Alam, M. S., et al., "Ultra-high-Q resonances in plasmonic metasurfaces," Nat. Commun., Vol. 12, 974, 2021.

    25. Hakala, T. K., et al., "Bose-Einstein condensation in a plasmonic lattice," Nat. Phys., Vol. 14, 739-744, 2018.

    26. Huttunen, M., et al., "Efficient nonlinear metasurfaces by using multiresonant high-Q plasmonic arrays," J. Opt. Soc. Am. B, Vol. 36, E30, 2019.

    27. Kinkhabwala, A., et al., "Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna," Nat. Photonics, Vol. 3, 654-657, 2009.

    28. Hsu, C. W., et al., "Transparent displays enabled by resonant nanoparticle scattering," Nat. Commun., Vol. 5, 3152, 2014.

    29. Krasnok, A., M. Tymchenko, and A. Alù, "Nonlinear metasurfaces: A paradigm shift in nonlinear optics," Mater., Vol. 21, 8-21, 2018.

    30. Reshef, O., et al., "Multiresonant high-Q plasmonic metasurfaces," Nano Lett., Vol. 19, 6429-6434, 2019.

    31. Purcell, E. and C. Pennypacker, "Scattering and absorption of light by nonspherical dielectric grains," Astrophys. J., Vol. 186, 705-714, 1973.

    32. Sauvan, C., J. Hugonin, I. Maksymov, and P. Lalanne, "Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators," Phys. Rev. Lett., Vol. 110, 2013.

    33. Kwiat, P. G., E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, "Ultrabright source of polarization-entangled photons," Phys. Rev. A, Vol. 60, R773, 1999.

    34. Reimer, C., et al., "Cross-polarized photon-pair generation and bi-chromatically pumped optical parametric oscillation on a chip," Nat. Commun., Vol. 6, 8236, 2015.

    35. Saffman, M. and T. G. Walker, "Creating single-atom and single-photon sources from entangled atomic ensembles," Phys. Rev. A, Vol. 66, 065403, 2002.

    36. Lu, D., J. Kan, E. Fullerton, and Z. Liu, "Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials," Nat. Nanotechnol., Vol. 9, 48-53, 2014.

    37. Vieu, C., et al., "Electron beam lithography: Resolution limits and applications," Appl. Surf. Sci., Vol. 164, 111-117, 2000.

    38. Wang, K., H. Qian, Z. Liu, and P. K. L. Yu, "Second-order nonlinear susceptibility enhancement in gallium nitride nanowires (invited)," Progress In Electromagnetics Research, Vol. 168, 25-30, 2020.

    39. Zhong, H.-S., et al., "Quantum computational advantage using photons," Science, Vol. 370, 1460-1463, 2020.