Vol. 172

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2022-01-02

A Single-Layer Focusing Metasurface Based on Induced Magnetism

By Honggang Hao, Xuehong Ran, Yihao Tang, Sen Zheng, and Wei Ruan
Progress In Electromagnetics Research, Vol. 172, 77-88, 2021
doi:10.2528/PIER21111601

Abstract

A transmissive single-layer Huygens unit cell based on induced magnetism is proposed to design low-profile and multi-focus metasurface. The Huygens unit cell consists of a pair of antisymmetric metal elements and a dielectric substrate with only 1.2 mm thickness (λ0/6.8 at 37 GHz). The surface currents flowing in the opposite directions form the circulating electric currents to induce the magnetic currents orthogonal to the electric currents. The full coverage of 2π phase is achieved through optimizing the parameters of the metal elements, which solves the problem of the incomplete phase coverage caused by layer number reduction. With Holographic theory, the compensating phase distribution on the metasurface is calculated. The incident plane wave can be converged to designated points in any desired fashion including focal number, location and intensity distribution, which exhibits outstanding manipulation capability. As the simulations and measured results show, the designed metasurface can achieve good multi-focus focusing characteristics. The focusing efficiency at the center frequency is 43.78%, and the relative bandwidth with 20% focusing efficiency exceeds 20%. The designed metasurface has the advantages of low profile, simple processing, and high efficiency, which has a wide range of application prospects in the fields of millimeter wave imaging, biomedical diagnosis and detection.

Citation


Honggang Hao, Xuehong Ran, Yihao Tang, Sen Zheng, and Wei Ruan, "A Single-Layer Focusing Metasurface Based on Induced Magnetism," Progress In Electromagnetics Research, Vol. 172, 77-88, 2021.
doi:10.2528/PIER21111601
http://jpier.org/PIER/pier.php?paper=21111601

References


    1. Marcin, K., "Real-time concealed object detection and recognition in passive imaging at 250 GHz," Appl. Opt., Vol. 58, 3134-3140, 2019.
    doi:10.1364/AO.58.003134

    2. Li, H. S., X. W. Zhang, X. Q. Zhang, and L. P. Lu, "Design of photoelectric detection sensor incorporated with meso-lens array and its detection screen performance analysis," IEEE Sens. J., Vol. 21, 1444-1452, 2021.
    doi:10.1109/JSEN.2020.3016018

    3. Cu-Nguyen, P. H., G. Adrian, F. Patrik, S. Andreas, S. Stefan, and Z. Hans, "An imaging spectrometer employing tunable hyperchromatic microlenses," Light: Sci. Appl., Vol. 5, e16058, 2016.
    doi:10.1038/lsa.2016.58

    4. Yuichi, K., M. Daichi, and S. Shunichi, "Superresolution imaging via superoscillation focusing of a radially polarized beam," Optica., Vol. 5, 86-92, 2018.
    doi:10.1364/OPTICA.5.000086

    5. Choi, W. C., S. Lim, and Y. J. Yoon, "Evaluation of transmit-array lens antenna for deep-seated hyperthermia tumor treatment," IEEE Antennas Wirel. Propag. Lett., Vol. 19, 866-870, 2020.
    doi:10.1109/LAWP.2020.2982676

    6. Liao, C. S., P. Wang, C. Y. Huang, P. Lin, G. Eakins, R. T. Bentley, R. G. Liang, and J. X. Cheng, "In vivo and in situ spectroscopic imaging by a handheld stimulated raman scattering microscope," ACS Photonics, Vol. 5, 947-954, 2018.
    doi:10.1021/acsphotonics.7b01214

    7. Yang, L., Y. Zeng, and R. Zhang, "Channel estimation for millimeter-wave MIMO communications with lens antenna arrays," IEEE Trans. Veh. Technol., Vol. 67, 3239-3251, 2018.
    doi:10.1109/TVT.2017.2779828

    8. Su, Y. Y. and Z. N. Chen, "A radial transformation-optics mapping for flat ultra-wide-angle dual-polarized stacked GRIN MTM luneburg lens antenna," IEEE Trans. Antennas Propag., Vol. 67, 2961-2970, 2019.
    doi:10.1109/TAP.2019.2900346

    9. Hsiao, H. H., C. H. Chu, and D. P. Tsai, "Fundamentals and applications of metasurfaces," Small Methods, Vol. 1, 1600064, 2017.
    doi:10.1002/smtd.201600064

    10. Wu, R. Y., L. Bao, L. W. Wu, Z. X. Wang, Q. Ma, J. W. Wu, G. D. Bai, V. Galdi, and T. J. Cui, "Independent control of copolarized amplitude and phase responses via anisotropic metasurfaces," Adv. Opt., Vol. 8, 1902126, 2020.
    doi:10.1002/adom.201902126

    11. Bao, L., R. Y. Wu, X. J. Fu, Q. Ma, G. D. Bai, J. Mu, R. Z. Jiang, and T. J. Cui, "Multi-beam forming and controls by metasurface with phase and amplitude modulations," IEEE Trans. Antenn. Propag., Vol. 66, 6680-6685, 2019.
    doi:10.1109/TAP.2019.2925289

    12. Mueller, J. P. B., N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, "Metasurface polarization optics: Independent phase control of arbitrary orthogonal states of polarization," Phys. Rev. Lett., Vol. 118, 113901, 2017.
    doi:10.1103/PhysRevLett.118.113901

    13. Arbabi, A., Y. Horie, M. Bagheri, and A. Faraon, "Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission," Nat. Nanotechnol., Vol. 10, 937-943, 2015.
    doi:10.1038/nnano.2015.186

    14. Liu, W. W., S. Q. Chen, Z. C. Li, H. Cheng, P. Yu, J. X. Li, and J. G. Tian, "Realization of broadband cross-polarization conversion in transmission mode in the terahertz region using a single-layer metasurface," Opt. Lett., Vol. 40, 3185-3188, 2015.
    doi:10.1364/OL.40.003185

    15. Zou, M., M. Su, and H. Yu, "Ultra-broadband and wide-angle terahertz polarization converter based on symmetrical anchor-shaped metamaterial," Opt. Mater., Vol. 107, 110062, 2020.
    doi:10.1016/j.optmat.2020.110062

    16. Cai, T., G. M. Wang, S. W. Tang, H. X. Xu, J. W. Duan, H. J. Guo, F. X. Guan, S. L. Sun, Q. He, and L. Zhou, "High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces," Phys. Rev. Appl., Vol. 8, 034033, 2017.
    doi:10.1103/PhysRevApplied.8.034033

    17. Cheng, K. Y., Z. Y. Wei, Y. C. Fan, X. M. Zhang, C. Wu, and H. Q. Li, "Realizing broadband transparency via manipulating the hybrid coupling modes in metasurfaces for high-efficiency metalens," Adv. Opt. Mater., Vol. 7, 1900016, 2019.
    doi:10.1002/adom.201900016

    18. Pfeiffer, C. and A. Grbic, "Metamaterial Huygens' surfaces: Tailoring wave fronts with reflectionless sheets," Phys. Rev. Lett., Vol. 110, 197401, 2013.
    doi:10.1103/PhysRevLett.110.197401

    19. Xu, H. X., G. W. Hu, L. Han, M. H. Jiang, Y. J. Huang, Y. Li, X. M. Yang, X. H. Ling, L. Z. Chen, J. L. Zhao, and C. W. Qiu, "Chirality-assisted high-efficiency metasurfaces with independent control of phase, amplitude, and polarization," Adv. Opt. Mater., Vol. 7, 1801479, 2019.

    20. Jia, S. L., X. Wan, X. J. Fu, Y. J. Zhao, and T. J. Cui, "Low-reflection beam refractions by ultrathin huygens metasurface," AIP Adv., Vol. 5, 4773-4776, 2015.

    21. Wang, Z. C., X. M. Ding, K. Zhang, and Q. Wu, "Spacial energy distribution manipulation with multi-focus Huygens metamirror," Sci. Rep., Vol. 7, 9081, 2017.
    doi:10.1038/s41598-017-09474-w

    22. Chen, K., Y. J. Feng, F. Monticone, J. M. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. M. Ding, S. Zhang, A. Alu, and C. W. Qiu, "A reconfigurable active Huygens' metalens," Adv. Mater., Vol. 29, 1606422, 2017.
    doi:10.1002/adma.201606422

    23. Abdo-Sanchez, E., M. Chen, A. Epstein, and G. V. Eleftheriades, "A leaky-wave antenna with controlled radiation using a bianisotropic Huygens' metasurface," IEEE Trans. Antennas Propag., Vol. 67, 108-120, 2019.
    doi:10.1109/TAP.2018.2878082

    24. Song, L. Z., P. Y. Qin, and Y. J. Guo, "A high-efficiency conformal transmitarray antenna employing dual-layer ultrathin Huygens element," IEEE Trans. Antennas Propag., Vol. 69, 848-858, 2021.
    doi:10.1109/TAP.2020.3016157

    25. Tian, C., Y. C. Jiao, and G. Zhao, "Circularly polarized transmitarray antenna using low-profile dual-linearly polarized elements," IEEE Trans. Antennas Propag., Vol. 16, 465-468, 2017.
    doi:10.1109/LAWP.2016.2583486

    26. Hsu, C. Y., L. T. Hwang, T. S. Horng, S. M. Wang, F. S. Chang, and C. N. Dorny, "Transmitarray design with enhanced aperture efficiency using small frequency selective surface cells and discrete Jones matrix analysis," IEEE Trans. Antennas Propag., Vol. 66, 3983-3994, 2018.
    doi:10.1109/TAP.2018.2839755

    27. Yi, X., T. Su, X. Li, B. Wu, and L. Yang, "A double-layer wideband transmitarray antenna using two degrees of freedom elements around 20 GHz," IEEE Trans. Antennas Propag., Vol. 67, 2798-2802, 2019.
    doi:10.1109/TAP.2019.2893265

    28. Islam, K. M. R. and S. Choi, "Compact double-layer FR4-based focusing lens using high-efficiency Huygens' metasurface unit cells," Sensors, Vol. 20, 6142, 2020.
    doi:10.3390/s20216142