Vol. 173

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Recent Progress on Achromatic Metalenses (Invited Review)

By Qikai Chen, Yitian Liu, Yaoyuan Lei, Sijie Pian, Zhuning Wang, and Yaoguang Ma
Progress In Electromagnetics Research, Vol. 173, 9-23, 2022


As a potential alternative to conventional lenses, metalenses have the advantage of ultrathin volume and light weight. Such miniaturization is expected to apply to compact, nanoscale optical devices such as micro-cameras and high-resolution display. However, chromatic aberration is an important problem in the application of metalenses, which will damage the imaging resolution and color reality for multi-wavelength incident light. Here, we briefly discuss recent development of design methods for achromatic metalenses, containing one or more pieces, and experimental evaluation of their performances.


Qikai Chen, Yitian Liu, Yaoyuan Lei, Sijie Pian, Zhuning Wang, and Yaoguang Ma, "Recent Progress on Achromatic Metalenses (Invited Review)," Progress In Electromagnetics Research, Vol. 173, 9-23, 2022.


    1. Yu, N., P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, "Light propagation with phase discontinuities: Generalized laws of reflection and refraction," Science, Vol. 334, 333-337, 2011.

    2. Aieta, F., P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, "Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces," Nano Lett., Vol. 12, 4932-4936, 2012.

    3. Khorasaninejad, M., F. Aieta, P. Kanhaiya, M. A. Kats, P. Genevet, D. Rousso, and F. Capasso, "Achromatic metasurface lens at telecommunication wavelengths," Nano Lett., Vol. 15, 5358-5362, 2015.

    4. Aieta, F., M. A. Kats, P. Genevet, and F. Capasso, "Multiwavelength achromatic metasurfaces by dispersive phase compensation," Science, Vol. 347, 1342-1345, 2015.

    5. Lalanne, P. and P. Chavel, "Metalenses at visible wavelengths: Past, present, perspectives," Laser Photonics Rev., Vol. 11, 2016.

    6. Liang, H., Q. Lin, X. Xie, Q. Sun, Y. Wang, L. Zhou, L. Liu, X. Yu, J. Zhou, T. F. Krauss, and J. Li, "Ultrahigh numerical aperture metalens at visible wavelengths," Nano Lett., Vol. 18, 4460-4466, 2018.

    7. Huang, L., X. Chen, H. Muhlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, "Three-dimensional optical holography using a plasmonic metasurface," Nat. Commun., Vol. 4, 2808, 2013.

    8. Faraji-Dana, M., E. Arbabi, A. Arbabi, S. M. Kamali, H. Kwon, and A. Faraon, "Compact folded metasurface spectrometer," Nat. Commun., Vol. 9, 4196, 2018.

    9. Tittl, A., A. Leitis, M. Liu, F. Yesilkoy, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, "Imaging-based molecular barcoding with pixelated dielectric metasurfaces," Science, Vol. 360, 1105-1109, 2018.

    10. Zhu, A. Y., W.-T. Chen, M. Khorasaninejad, J. Oh, A. Zaidi, I. Mishra, R. C. Devlin, and F. Capasso, "Ultra-compact visible chiral spectrometer with meta-lenses," APL Photonics, Vol. 2, 036103, 2017.

    11. Aieta, F., P. Genevet, M. Kats, and F. Capasso, "Aberrations of flat lenses and aplanatic metasurfaces," Opt. Express., Vol. 21, 31530-31539, 2013.

    12. Millán, M. S., J. Otón, and E. Pérez-Cabré, "Chromatic compensation of programmable Fresnel lenses," Opt. Express, Vol. 14, 6226-6242, 2006.

    13. Arbabi, E., A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, "Multiwavelength metasurfaces through spatial multiplexing," Sci. Rep., Vol. 6, 32803, 2016.

    14. Hu, J., C.-H. Liu, X. Ren, L. J. Lauhon, and T. W. Odom, "Plasmonic lattice lenses for multiwavelength achromatic focusing," ACS Nano., Vol. 10, 10275-10282, 2016.

    15. Tang, F., X. Ye, Q. Li, Y. Wang, H. Yu, W. Wu, B. Li, and W. Zheng, "Dielectric metalenses at long-wave infrared wavelengths: Multiplexing and spectroscope," Results Phys., Vol. 18, 103215, 2020.

    16. Khorasaninejad, M., Z. Shi, A. Y. Zhu, W. T. Chen, V. Sanjeev, A. Zaidi, and F. Capasso, "Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion," Nano Lett., Vol. 17, 1819-1824, 2017.

    17. Arbabi, E., A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, "Dispersionless metasurfaces using dispersive meta-atoms," Conference on Lasers and Electro-Optics (CLEO), 1-2, 2016.

    18. Wang, S., P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, "Broadband achromatic optical metasurface devices," Nat. Commun., Vol. 8, 187, 2017.

    19. Berry, M. V., "Quantal phase factors accompanying adiabatic changes," Proc. R. Soc. Lond., Vol. 392, 45-57, 1996.

    20. Kanwal, S., J. Wen, B. Yu, D. Kumar, X. Chen, Y. Kang, C. Bai, and D. Zhang, "High-efficiency, broadband, near diffraction-limited, dielectric metalens in ultraviolet spectrum," Nanomaterials, Vol. 10, 2020.

    21. Wang, S., P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, "A broadband achromatic metalens in the visible," Nat. Nanotechnol., Vol. 13, 227-232, 2018.

    22. Chen, W. T., A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, "A broadband achromatic metalens for focusing and imaging in the visible," Nat. Nanotechnol., Vol. 13, 220-226, 2018.

    23. Khorasaninejad, M., A. Y. Zhu, C. Roques-Carmes, , W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, and F. Capasso, "Polarization-insensitive metalenses at visible wavelengths," Nano Lett., Vol. 16, 7229-7234, 2016.

    24. Guo, Y., Z. Jafari, L. Xu, C. Bao, P. Liao, G. Li, A. Agarwal, L. Kimerling, J. Michel, A. Willner, and L. Zhang, "Ultra-flat dispersion in an integrated waveguide with five and six zero-dispersion wavelengths for mid-infrared photonics," Photonics Res., Vol. 7, 1279, 2019.

    25. Arbabi, E., A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, "Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces," Optica, Vol. 4, 625-632, 2017.

    26. Fan, Z.-B., H.-Y. Qiu, H.-L. Zhang, X.-N. Pang, L.-D. Zhou, L. Liu, H. Ren, Q.-H. Wang, and J.-W. Dong, "A broadband achromatic metalens array for integral imaging in the visible," Light Sci. Appl., Vol. 8, 67, 2019.

    27. Wang, Y., Q. Chen, W. Yang, Z. Ji, L. Jin, X. Ma, Q. Song, A. Boltasseva, J. Han, V. M. Shalaev, and S. Xiao, "High-efficiency broadband achromatic metalens for near-IR biological imaging window," Nat. Commun., Vol. 12, 5560, 2021.

    28. Shrestha, S., A. C. Overvig, M. Lu, A. Stein, and N. Yu, "Broadband achromatic dielectric metalenses," Light Sci. Appl., Vol. 7, 85, 2018.

    29. Ndao, A., L. Hsu, J. Ha, J.-H. Park, C. Chang-Hasnain, and B. Kanté, "Octave bandwidth photonic fishnet-achromatic-metalens," Nat. Commun., Vol. 11, 3205, 2020.

    30. Chung, H., H. Chung, O. D. Miller, and O. D. Miller, "High-NA achromatic metalenses by inverse design," Opt. Express, Vol. 28, 6945-6965, 2020.

    31. Zhou, M., D. Liu, S. W. Belling, H. Cheng, M. A. Kats, S. Fan, M. L. Povinelli, and Z. Yu, "Inverse design of metasurfaces based on coupled-mode theory and adjoint optimization," ACS Photonics, Vol. 8, 2265-2273, 2021.

    32. Li, Z., P. Lin, Y.-W. Huang, J.-S. Park, W. T. Chen, Z. Shi, C.-W. Qiu, J.-X. Cheng, and F. Capasso, "Meta-optics achieves RGB-achromatic focusing for virtual reality," Sci. Adv., Vol. 7, eabe4458, 2021.

    33. Svanberg, K., "A class of globally convergent optimization methods based on conservative convex separable approximations," SIAM J. Optim., Vol. 12, 555-573, 2002.

    34. Presutti, F. and F. Monticone, "Focusing on bandwidth: Achromatic metalens limits," Optica, Vol. 7, 624, 2020.

    35. Cheng, Q., M. Ma, D. Yu, Z. Shen, J. Xie, J. Wang, N. Xu, H. Guo, W. Hu, S. Wang, T. Li, and S. Zhuang, "Broadband achromatic metalens in terahertz regime," Sci. Bull., Vol. 64, 1525-1531, 2019.

    36. Zhao, F., Z. Li, X. Dai, X. Liao, S. Li, J. Cao, Z. Shang, Z. Zhang, G. Liang, G. Chen, H. Li, and Z. Wen, "Broadband achromatic sub-diffraction focusing by an amplitude-modulated terahertz metalens," Adv. Opt. Mater., Vol. 8, 2000842, 2020.

    37. Chen, W. T., A. Y. Zhu, J. Sisler, Y.-W. Huang, K. M. A. Yousef, E. Lee, C.-W. Qiu, and F. Capasso, "Broadband achromatic metasurface-refractive optics," Nano Lett., Vol. 18, 7801-7808, 2018.

    38. Tong, L., J. Lou, and E. Mazur, "Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides," Opt. Express, Vol. 12, 1025, 2004.

    39. Almeida, V. R., Q. Xu, C. A. Barrios, and M. Lipson, "Guiding and confining light in void nanostructure," Opt. Lett., Vol. 29, 1209, 2004.

    40. Saeidi, C. and D. van der Weide, "Wideband plasmonic focusing metasurfaces," Appl. Phys. Lett., Vol. 105, 053107, 2014.

    41. Groever, B., W. T. Chen, and F. Capasso, "Meta-lens doublet in the visible region," Nano Lett., Vol. 17, 4902-4907, 2017.

    42. Shi, X., D. Meng, Z. Qin, Q. He, S. Sun, L. Zhou, D. R. Smith, Q. H. Liu, T. Bourouina, and Z. Liang, "All-dielectric orthogonal doublet cylindrical metalens in long-wave infrared regions," Opt. Express, Vol. 29, 3524-3532, 2021.

    43. Zhou, Y., I. I. Kravchenko, H. Wang, J. R. Nolen, G. Gu, and J. G. Valentine, "Multilayer non-interacting dielectric metasurfaces for multiwavelength metaoptics," Nano Lett., Vol. 18, No. 12, 7529-7537, 2018.

    44. Yao, Z., W. Chen, and Y. Chen, "Double-layer metalens with a reduced meta-atom aspect ratio," Opt. Lett., Vol. 46, 1510-1513, 2021.

    45. McClung, A., M. Mansouree, and A. Arbabi, "At-will chromatic dispersion by prescribing light trajectories with cascaded metasurfaces," Light Sci. Appl., Vol. 9, 93, 2020.

    46. Kim, C., S.-J. Kim, and B. Lee, "Doublet metalens design for high numerical aperture and simultaneous correction of chromatic and monochromatic aberrations," Opt. Express, Vol. 28, 18059-18076, 2020.

    47. Huang, Z., M. Qin, X. Guo, C. Yang, and S. Li, "Achromatic and wide-field metalens in the visible region," Opt. Express, Vol. 29, 13542-13551, 2021.

    48. Johnson, T. J. and J. F. O'rourke, "Method for making replica contour block masters for producing Schmidt corrector plates,", U.S. patent US3837124 A, 1974.

    49. Li, M., S. Li, L. K. Chin, Y. Yu, D. P. Tsai, and R. Chen, "Dual-layer achromatic metalens design with an effective Abbe number," Opt. Express, Vol. 28, 26041-26055, 2020.

    50. Khorasaninejad, M., W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, C. Roques-Carmes, I. Mishra, and F. Capasso, "Visible wavelength planar metalenses based on titanium dioxide," IEEE J. Sel. Top. Quantum Electron., Vol. 23, 43-58, 2017.

    51. Spägele, C., M. Tamagnone, D. Kazakov, M. Ossiander, M. Piccardo, and F. Capasso, "Multifunctional wide-angle optics and lasing based on supercell metasurfaces," Nat. Commun., Vol. 12, 3787, 2021.

    52. Elsawy, M. M. R., A. Gourdin, M. Binois, R. Duvigneau, D. Felbacq, S. Khadir, P. Genevet, and S. Lanteri, "Multiobjective statistical learning optimization of RGB metalens," ACS Photonics, Vol. 8, 2498-2508, 2021.

    53. Yoon, G., K. Kim, D. Huh, H. Lee, and J. Rho, "Single-step manufacturing of hierarchical dielectric metalens in the visible," Nat. Commun., Vol. 11, 2268, 2020.

    54. Li, N., Z. Xu, Y. Dong, T. Hu, Q. Zhong, Y. H. Fu, S. Zhu, and N. Singh, "Large-area metasurface on CMOS-compatible fabrication platform: Driving flat optics from lab to fab," Nanophotonics, Vol. 9, No. 10, 3071-3087, 2020.