Vol. 172

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Tunable Topological Refractions in Valley Sonic Crystals with Triple Valley Hall Phase Transitions (Invited Paper)

By Ding Jia, Yin Wang, Yong Ge, Shou-Qi Yuan, and Hong-Xiang Sun
Progress In Electromagnetics Research, Vol. 172, 13-22, 2021


Topological refractions created by valley sonic crystals (VSCs) have attracted great attentions in the communities of physics and engineering owing to the advantage of zero reflection of sound and the potential for designing advanced acoustic devices. In previous works, topological refractions of valley edge states are demonstrated to be determined by the projections of the valleys K and K′, and two types of topological refractions generally exist at opposite terminals or different frequency bands. However, the realization of tunable topological refractions at the fixed frequency band and terminal still poses great challenge. To overcome this, we report the realization of tunable topological refractions by VSCs with triple valley Hall phase transitions. By simply rotating rods, we realize 3 types of topological waveguides (T1, T2 and T3) composed of two VSCs, in which the projections of the observed valley edge states can be modulated between K and K′. Additionally, based on the measured transmittance spectra, we experimentally demonstrate that these valleyedge states are almost immune to backscattering against sharp bends. More importantly, we realize tunable topological refractions at the fixed frequency band and terminal, and experimentally observe the coexistence of positive and negative refractions for T1 and T3, and negative refractions for T2. The proposed tunable topological refractions have potential applications in designing multi-functional sound antennas and advanced communication devices.


Ding Jia, Yin Wang, Yong Ge, Shou-Qi Yuan, and Hong-Xiang Sun, "Tunable Topological Refractions in Valley Sonic Crystals with Triple Valley Hall Phase Transitions (Invited Paper)," Progress In Electromagnetics Research, Vol. 172, 13-22, 2021.


    1. Xiao, D., W. Yao, and Q. Niu, "Valley-contrasting physics in graphene: Magnetic moment and topological transport," Phys. Rev. Lett., Vol. 99, No. 23, 236809, 2007, doi: 10.1103/PhysRevLett.99.236809.

    2. Zeng, H., J. Dai, W. Yao, D. Xiao, and X. Cui, "Valley polarization in Mos2 monolayers by optical pumping," Nat. Nanotechnol., Vol. 7, No. 8, 490-493, 2012, doi: 10.1038/nnano.2012.95.

    3. Zhang, F., A. H. MacDonald, and E. J. Mele, "Valley chern numbers and boundary modes in gapped bilayer graphene," Proc. Natl. Acad. Sci., Vol. 110, No. 26, 10546-10551, USA, 2013, doi: 10.1073/pnas.1308853110.

    4. Ju, L., Z. Shi, N. Nair, Y. Lv, C. Jin, J. Velasco, Jr., C. Ojeda-Aristizabal, H. A. Bechtel, M. C. Martin, A. Zettl, J. Analytis, and F. Wang, "Topological valley transport at bilayer graphene domain walls," Nature, Vol. 520, No. 7549, 650-655, 2015, doi: 10.1038/nature14364.

    5. Schaibley, J. R., H. Yu, G. Clark, P. Rivera, J. S. Ross, K. L. Seyler, W. Yao, and X. Xu, "Valleytronics in 2D materials," Nat. Rev. Maters, Vol. 1, No. 11, 16055, 2016, doi: 10.1038/natrevmats.2016.55.

    6. Li, J., R. X. Zhang, Z. Yin, J. Zhang, K. Watanabe, T. Taniguchi, C. Liu, and J. Zhu, "A valley valve and electron beam splitter," Science, Vol. 362, No. 6419, 1149-1152, 2018, doi: 10.1126/science.aao5989.

    7. Ma, T. and G. Shvets, "All-Si valley-Hall photonic topological insulator," New J. Phys., Vol. 18, No. 2, 025012, 2016, doi: 10.1088/1367-2630/18/2/025012.

    8. Wu, X., Y. Meng, J. Tian, Y. Huang, H. Xiang, D. Han, and W. Wen, "Direct observation of valley-polarized topological edge states in designer surface plasmon crystals," Nat. Commun., Vol. 8, No. 1, 1304, 2017, doi: 10.1038/s41467-017-01515-2.

    9. Dong, J. W., X. D. Chen, H. Zhu, Y. Wang, and X. Zhang, "Valley photonic crystals for control of spin and topology," Nat. Mater., Vol. 16, No. 3, 298-302, 2017, doi: 10.1038/nmat4807.

    10. Chen, X. D., F. L. Zhao, M. Chen, and J. W. Dong, "Valley-contrasting physics in all-dielectric photonic crystals: Orbital angular momentum and topological propagation," Phys. Rev. B, Vol. 96, No. 2, 020202, 2017, doi: 10.1103/PhysRevB.96.020202.

    11. Gao, F., H. R. Xue, Z. J. Yang, K. F. Lai, Y. Yu, X. Lin, Y. D. Chong, G. Shvets, and B. L. Zhang, "Topologically protected refraction of robust kink states in Valley photonic crystals," Nat. Phys., Vol. 14, No. 2, 140-144, 2017, doi: 10.1038/nphys4304.

    12. Gao, Z., Z. J. Yang, F. Gao, H. R. Xue, Y. H. Yang, J. W. Dong, and B. L. Zhang, "Valley surface-wave photonic crystal and its bulk edge transport," Phys. Rev. B, Vol. 96, No. 20, 201402, 2017, doi: 10.1103/PhysRevB.96.201402.

    13. Chen, Q. L., L. Zhang, M. J. He, Z. J. Wang, X. Lin, F. Gao, Y. H. Yang, B. L. Zhang, and H. S. Chen, "Valley-Hall photonic topological insulators with dual-band kink states," Adv. Opt. Mate., Vol. 7, No. 15, 1900036, 2019, doi: 10.1002/adom.201900036.

    14. Kang, Y. H., X. Ni, X. J. Cheng, A. B. Khanikaev, and A. Z. Genack, "Pseudo-spin-valley coupled edge states in a photonic topological insulator," Nat. Commun., Vol. 9, No. 1, 1-7, 2018, doi: 10.1038/s41467-018-05408-w.

    15. Shalaev, M. I., W. Walasik, A. Tsukernik, Y. Xu, and N. M. Litchinitser, "Robust topologically protected transport in photonic crystals at telecommunication wavelengths," Nat. Nanotech., Vol. 14, No. 1, 31, 2018, doi: 10.1038/s41565-018-0297-6.

    16. Noh, J., S. Huang, K. P. Chen, and M. C. Rechtsman, "Observation of photonic topological valley Hall edge states," Phys. Rev. Lett., Vol. 120, No. 6, 063902, 2018, doi: 10.1103/PhysRevLett.120.063902.

    17. Yang, Y., H. Jiang, and Z. H. Hang, "Topological valley transport in two-dimensional honeycomb photonic crystals," Sci. Rep., Vol. 8, No. 1, 1588, 2018, doi: 10.1038/s41598-018-20001-3.

    18. Yang, Y. H., Z. Gao, H. R. Xue, L. Zhang, M. J. He, Z. J. Yang, R. Singh, Y. D. Chong, B. L. Zhang, and H. S. Chen, "Realization of a three-dimensional photonic topological insulator," Nature, Vol. 565, No. 7741, 622-626, 2019, doi: 10.1038/s41586-018-0829-0.

    19. Zeng, Y., U. Chattopadhyay, B. Zhu, B. Qiang, J. Li, Y. Jin, L. Li, A. G. Davies, E. H. Linfield, B. Zhang, Y. Chong, and Q. J. Wang, "Electrically pumped topological laser with valley edge modes," Nature, Vol. 578, No. 7794, 246-250, 2020, doi: 10.1038/s41586-020-1981-x.

    20. Pal, R. K. and M. Ruzzene, "Edge waves in plates with resonators: An elastic analogue of the quantum valley Hall effect," New J. Phys., Vol. 19, No. 2, 025001, 2017, doi: 10.1088/1367-2630/aa56a2.

    21. Huo, S. Y., J. J. Chen, H. B. Huang, and G. L. Huang, "Simultaneous multi-band valley-protected topological edge states of shear vertical wave in two-dimensional phononic crystals with veins," Sci. Rep., Vol. 7, No. 1, 10335, 2017, doi: 10.1038/s41598-017-10857-2.

    22. Yan, M., J. Y. Lu, F. Li, W. Y. Deng, X. Q. Huang, J. H. Ma, and Z. Y. Liu, "On-chip valley topological materials for elastic wave manipulation," Nat. Mater., Vol. 17, No. 11, 993-998, 2018, doi: 10.1038/s41563-018-0191-5.

    23. Wang, J. and J. Mei, "Topological valley-chiral edge states of lamb waves in elastic thin plates," Appl. Phys. Express, Vol. 11, No. 5, 057302, 2018, doi: 10.7567/apex.11.057302.

    24. Fan, H., B. Xia, L. Tong, S. Zheng, and D. Yu, "Elastic higher-order topological insulator with topologically protected corner states," Phys. Rev. Lett., Vol. 122, No. 20, 204301, 2019, doi: 10.1103/PhysRevLett.122.204301.

    25. Yang, L. Y., K. P. Yu, B. Bonello, B. Djafari-Rouhani, W. Wang, and Y. Wu, "Abnormal topological refraction into free medium at subwavelength scale in valley phononic crystal plates," Phys. Rev. B, Vol. 103, No. 18, 184303, 2021, doi: 10.1103/PhysRevB.103.184303.

    26. Huang, H. B., J. J. Chen, and S. Y. Hou, "Recent advances in topologic alelastic metamaterials," J. Phys. Condens. Mat., Vol. 33, No. 50, 503002, 2021, doi: 10.1088/1361-648X/ac27d8.

    27. Ye, L. P., C. Y. Qiu, J. Y. Lu, X. H. Wen, Y. Y. Shen, M. Z. Ke, F. Zhang, and Z. Y. Liu, "Observation of acoustic valley vortex states and valley-chirality locked beam splitting," Phys. Rev. B, Vol. 95, No. 17, 174106, 2017, doi: 10.1103/PhysRevB.95.174106.

    28. Lu, J. Y., C. Y. Qiu, L. P. Ye, X. Y. Fan, M. Z. Ke, F. Zhang, and Z. Y. Liu, "Observation of topological valley transport of sound in sonic crystals," Nat. Phys., Vol. 13, No. 4, 369-374, 2016, doi: 10.1038/nphys3999.

    29. Lu, J. Y., C. Y. Qiu, W. Y. Deng, X. Q. Huang, F. Li, F. Zhang, S. Q. Chen, and Z. Y. Liu, "Valley topological phases in bilayer sonic crystals," Phys. Rev. Lett., Vol. 120, No. 11, 116802, 2018, doi: 10.1103/PhysRevLett.120.116802.

    30. Zhang, Z., Y. Tian, Y. H. Wang, S. X. Gao, Y. Cheng, X. J. Liu, and J. Christensen, "Directional acoustic antennas based on valley-Hall topological insulators," Adv. Mater, Vol. 30, 1803229, 2018, doi: 10.1002/adma.201803229.

    31. Zhang, Z. W., Y. Tian, Y. Cheng, Q. Wei, X. J. Liu, and J. Christensen, "Topological acoustic delay line," Phys. Rev. Appl., Vol. 9, No. 3, 034032, 2018, doi: 10.1103/PhysRevApplied.9.034032.

    32. He, C., S. Y. Yu, H. Ge, H. Wang, Y. Tian, H. Zhang, X. C. Sun, Y. B. Chen, J. Zhou, M. H. Lu, and Y. F. Chen, "Three-dimensional topological acoustic crystals with pseudospin-valley coupled saddle surface states," Nat. Commun., Vol. 9, No. 1, 4555, 2018, doi: 10.1038/s41467-018-07030-2.

    33. Yang, Y. H., Z. J. Yang, and B. L. Zhang, "Acoustic valley edge states in a graphene-like resonator system," J. Appl. Phys., Vol. 123, No. 9, 091713, 2018, doi: 10.1063/1.5009626.

    34. Zhu, Z. X., X. Q. Huang, J. Y. Lu, M. Yan, F. Li, W. Y. Deng, and Z. Y. Liu, "Negative refraction and partition in acoustic valley materials of a square lattice," Phys. Rev. Appl., Vol. 12, No. 2, 024007, 2019, doi: 10.1103/PhysRevApplied.12.024007.

    35. Shen, Y. Y., C. Y. Qiu, X. X. Cai, L. P. Ye, J. Y. Lu, M. Z. Ke, and Z. Y. Liu, "Valley-projected edge modes observed in underwater sonic crystals," Appl. Phys. Lett., Vol. 114, No. 2, 023501, 2019, doi: 10.1063/1.5049856.

    36. Xie, B. Y., H. Liu, H. Cheng, Z. Y. Liu, S. Q. Chen, and J. G. Tian, "Acoustic topological transport and refraction in a Kekulé lattice," Phys. Rev. Appl., Vol. 11, No. 4, 044086, 2019, doi: 10.1103/physrevapplied.11.044086.

    37. Tian, Z., C. Shen, J. Li, E. Reit, H. Bachman, J. E. S. Socolar, S. A. Cummer, and T. J. Huang, "Dispersion tuning and route reconfiguration of acoustic waves in valley topological phononic crystals," Nat. Commun., Vol. 11, No. 1, 762, 2020, doi: 10.1038/s41467-020-14553-0.

    38. Wang, M. D., W. Y. Zhou, L. Y. Bi, C. Y. Qiu, M. Z. Ke, and Z. Y. Liu, "Valley-locked waveguide transport in acoustic heterostructures," Nat. Commun., Vol. 11, No. 1, 3000, 2020, doi: 10.1038/s41467-020-16843-z.

    39. Jia, D., Y. Ge, H. R. Xue, S. Q. Yuan, H. X. Sun, Y. H. Yang, X. J. Liu, and B. L. Zhang, "Topological refraction in dual-band valley sonic crystals," Phys. Rev. B, Vol. 103, No. 14, 144309, 2021, doi: 10.1103/PhysRevB.103.144309.

    40. Huang, Z., J. H. Wu, C. Wang, S. K. Yang, and F. Y. Ma, "Resonant-scattering hybrid device for multiband acoustic topology valley transmission," Phys. Rev. B, Vol. 104, No. 9, 094110, 2021, doi: 10.1103/PhysRevB.104.094110.

    41. Qu, H. F., X. N. Liu, and G. K. Hu, "Topological valley states in sonic crystals with Willis coupling," Appl. Phys. Lett., Vol. 119, No. 5, 051903, 2021, doi: 10.1063/5.0055789.

    42. He, H. L., C. Y. Qiu, L. P. Ye, X. X. Cai, X. Y. Fan, M. Z. Ke, F. Zhang, and Z. Y. Liu, "Topological negative refraction of surface acoustic waves in a Weyl phononic crystal," Nature, Vol. 560, No. 7716, 61-64, 2018, doi: 10.1038/s41586-018-0367-9.

    43. Yang, Y. H., H. X. Sun, J. P. Xia, H. R. Xue, Z. Gao, Y. Ge, D. Jia, Y. D. Chong, and B. L. Zhang, "Topological triply degenerate point with double Fermi arcs," Nat. Phys., Vol. 15, No. 7, 645-649, 2019, doi: 10.1038/s41567-019-0502-z.