Vol. 171

Latest Volume
All Volumes
All Issues
2021-08-03

Non-Hermitian Electromagnetic Metasurfaces at Exceptional Points (Invited Review)

By Zhipeng Li, Guangtao Cao, Chenhui Li, Shaohua Dong, Yan Deng, Xinke Liu, John S. Ho, and Cheng-Wei Qiu
Progress In Electromagnetics Research, Vol. 171, 1-20, 2021
doi:10.2528/PIER21051703

Abstract

Exceptional points are spectral singularities in non-Hermitian systems at which two or more eigenvalues and their corresponding eigenvectors simultaneously coalesce. Originating from quantum theory, exceptional points have attracted significant attention in optics and photonics because their emergence in systems with nonconservative gain and loss elements can give rise to many counterintuitive phenomena. Metasurfaces - two-dimensional artificial electromagnetic materials structured at the subwavelength scale - can provide a versatile platform for exploring such non-Hermitian phenomena through the addition of dissipation and amplification within their unit cells. These concepts enable a wide range of exotic phenomena, including unidirectional propagation, adiabatic mode conversion, and ultrasensitive measurements, which can be harnessed for technological applications. In this article, we review the recent advances in exceptional-point and non-Hermitian metasurfaces. We introduce the basic theory of exceptional point and non-Hermiticity in metasurfaces, highlight important achievements and applications, and discuss the future opportunities of non-Hermitian metasurfaces from basic science to emerging technologies.

Citation


Zhipeng Li, Guangtao Cao, Chenhui Li, Shaohua Dong, Yan Deng, Xinke Liu, John S. Ho, and Cheng-Wei Qiu, "Non-Hermitian Electromagnetic Metasurfaces at Exceptional Points (Invited Review)," Progress In Electromagnetics Research, Vol. 171, 1-20, 2021.
doi:10.2528/PIER21051703
http://jpier.org/PIER/pier.php?paper=21051703

References


    1. Bender, C. M. and S. Boettcher, "Real spectra in non-Hermitian Hamiltonians having PT symmetry," Physical Review Letters, Vol. 80, No. 24, 5243, 1998.
    doi:10.1103/PhysRevLett.80.5243

    2. Miri, M.-A. and A. Alù, "Exceptional points in optics and photonics," Science, Vol. 363, No. 6422, 2019.
    doi:10.1126/science.aar7709

    3. Guo, A., et al., "Observation of PT-symmetry breaking in complex optical potentials," Physical Review Letters, Vol. 103, No. 9, 093902, 2009.
    doi:10.1103/PhysRevLett.103.093902

    4. Bender, C. M., "Making sense of non-Hermitian Hamiltonians," Reports on Progress in Physics, Vol. 70, No. 6, 947, 2007.
    doi:10.1088/0034-4885/70/6/R03

    5. Rüter, C. E., K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, "Observation of parity-time symmetry in optics," Nature Physics, Vol. 6, No. 3, 192-195, 2010.
    doi:10.1038/nphys1515

    6. Zhao, H. and L. Feng, "Parity-time symmetric photonics," National Science Review, Vol. 5, No. 2, 183-199, 2018.
    doi:10.1093/nsr/nwy011

    7. Peng, B., et al., "Chiral modes and directional lasing at exceptional points," Proceedings of the National Academy of Sciences, Vol. 113, No. 25, 6845-6850, 2016.
    doi:10.1073/pnas.1603318113

    8. Feng, L., Z. J. Wong, R.-M. Ma, Y. Wang, and X. Zhang, "Single-mode laser by parity-time symmetry breaking," Science, Vol. 346, No. 6212, 972-975, 2014.
    doi:10.1126/science.1258479

    9. Xu, H., D. Mason, L. Jiang, and J. Harris, "Topological energy transfer in an optomechanical system with exceptional points," Nature, Vol. 537, No. 7618, 80-83, 2016.
    doi:10.1038/nature18604

    10. Regensburger, A., C. Bersch, M.-A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, "Parity-time synthetic photonic lattices," Nature, Vol. 488, No. 7410, 167-171, 2012.
    doi:10.1038/nature11298

    11. Peng, B., et al., "Parity-time-symmetric whispering-gallery microcavities," Nature Physics, Vol. 10, No. 5, 394-398, 2014.
    doi:10.1038/nphys2927

    12. Zhang, L., S. Mei, K. Huang, and C. W. Qiu, "Advances in full control of electromagnetic waves with metasurfaces," Advanced Optical Materials, Vol. 4, No. 6, 818-833, 2016.
    doi:10.1002/adom.201500690

    13. Ozcan, A. and C.-W. Qiu, eLight: Enlightening and Exploring Light, SpringerOpen, 2021.

    14. Yu, N., et al., "Light propagation with phase discontinuities: Generalized laws of reflection and refraction," Science, Vol. 334, No. 6054, 333-337, 2011.
    doi:10.1126/science.1210713

    15. Khorasaninejad, M., W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, "Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging," Science, Vol. 352, No. 6290, 1190-1194, 2016.
    doi:10.1126/science.aaf6644

    16. Mehmood, M., et al., "Visible-frequency metasurface for structuring and spatially multiplexing optical vortices," Advanced Materials, Vol. 28, No. 13, 2533-2539, 2016.
    doi:10.1002/adma.201504532

    17. Li, H.-P., G.-M. Wang, J.-G. Liang, and X.-J. Gao, "Wideband multifunctional metasurface for polarization conversion and gain enhancement," Progress In Electromagnetics Research, Vol. 155, 115-125, 2016.
    doi:10.2528/PIER16012011

    18. Lin, B.-Q., J. Guo, Y. Wang, Z. Wang, B. Huang, and X. Liu, "A wide-angle and wide-band circular polarizer using a bi-layer metasurface," Progress In Electromagnetics Research, Vol. 161, 125-133, 2018.
    doi:10.2528/PIER18010922

    19. Schurig, D., et al., "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, No. 5801, 977-980, 2006.
    doi:10.1126/science.1133628

    20. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Physical Review Letters, Vol. 100, No. 20, 207402, 2008.
    doi:10.1103/PhysRevLett.100.207402

    21. Huang, L., et al., "Three-dimensional optical holography using a plasmonic metasurface," Nature Communications, Vol. 4, No. 1, 1-8, 2013.

    22. Chen, J., Q. Cheng, J. Zhao, D. S. Dong, and T.-J. Cui, "Reduction of radar cross section based on a metasurface," Progress In Electromagnetics Research, Vol. 146, 71-76, 2014.
    doi:10.2528/PIER14022606

    23. Hsu, L. Y., T. Lepetit, and B. Kanté, "Extremely thin dielectric metasurface for carpet cloaking," Progress In Electromagnetics Research, Vol. 152, 33-40, 2015.
    doi:10.2528/PIER15032005

    24. Pendry, J. B., "Negative refraction makes a perfect lens," Physical Review Letters, Vol. 85, No. 18, 3966, 2000.
    doi:10.1103/PhysRevLett.85.3966

    25. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, No. 5514, 77-79, 2001.
    doi:10.1126/science.1058847

    26. Feng, L., R. El-Ganainy, and L. Ge, "Non-Hermitian photonics based on parity-time symmetry," Nature Photonics, Vol. 11, No. 12, 752-762, 2017.
    doi:10.1038/s41566-017-0031-1

    27. Shankar, R., Principles of Quantum Mechanics, Springer Science & Business Media, 2012.

    28. Mostafazadeh, A., "Pseudo-Hermiticity versus PT symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian," Journal of Mathematical Physics, Vol. 43, No. 1, 205-214, 2002.
    doi:10.1063/1.1418246

    29. Longhi, S., "Quantum-optical analogies using photonic structures," Laser & Photonics Reviews, Vol. 3, No. 3, 243-261, 2009.
    doi:10.1002/lpor.200810055

    30. Klaiman, S., U. Günther, and N. Moiseyev, "Visualization of branch points in p t-symmetric waveguides," Physical Review Letters, Vol. 101, No. 8, 080402, 2008.
    doi:10.1103/PhysRevLett.101.080402

    31. Haus, H. A. and W. Huang, "Coupled-mode theory," Proceedings of the IEEE, Vol. 79, No. 10, 1505-1518, 1991.

    32. Ghoshroy, A., S. K. Özdemir, and D. Ö. Güney, "Loss compensation in metamaterials and plasmonics with virtual gain," Optical Materials Express, Vol. 10, No. 8, 1862-1880, 2020.

    33. Gu, X., et al., "Unidirectional reflectionless propagation in a non-ideal parity-time metasurface based on far field coupling," Optics Express, Vol. 25, No. 10, 11778-11787, 2017.

    34. Wang, D., et al., "Superconductive PT-symmetry phase transition in metasurfaces," Applied Physics Letters, Vol. 110, No. 2, 021104, 2017.

    35. Sakhdari, M., M. Farhat, and P.-Y. Chen, "PT-symmetric metasurfaces: Wave manipulation and sensing using singular points," New Journal of Physics, Vol. 19, No. 6, 065002, 2017.

    36. Feng, L., et al., "Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies," Nature Materials, Vol. 12, No. 2, 108-113, 2013.

    37. Ge, L., Y. Chong, and A. D. Stone, "Conservation relations and anisotropic transmission resonances in one-dimensional PT-symmetric photonic heterostructures," Physical Review A, Vol. 85, No. 2, 023802, 2012.

    38. Chen, P.-Y. and J. Jung, "P T symmetry and singularity-enhanced sensing based on photoexcited graphene metasurfaces," Physical Review Applied, Vol. 5, No. 6, 064018, 2016.

    39. Lawrence, M., et al., "Manifestation of PT symmetry breaking in polarization space with terahertz metasurfaces," Physical Review Letters, Vol. 113, No. 9, 093901, 2014.

    40. Droulias, S., I. Katsantonis, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, "Chiral metamaterials with PT symmetry and beyond," Physical Review Letters, Vol. 122, No. 21, 213201, 2019.

    41. Kang, M., J. Chen, and Y. Chong, "Chiral exceptional points in metasurfaces," Physical Review A, Vol. 94, No. 3, 033834, 2016.

    42. Huang, Y., Y. Shen, C. Min, S. Fan, and G. Veronis, "Unidirectional reflectionless light propagation at exceptional points," Nanophotonics, Vol. 6, No. 5, 977-996, 2017.

    43. Hahn, C., S. H. Song, C. H. Oh, and P. Berini, "Single-mode lasers and parity-time symmetry broken gratings based on active dielectric-loaded long-range surface plasmon polariton waveguides," Optics Express, Vol. 23, No. 15, 19922-19931, 2015.

    44. Lin, Z., H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, "Unidirectional invisibility induced by P T-symmetric periodic structures," Physical Review Letters, Vol. 106, No. 21, 213901, 2011.

    45. Jia, Y., Y. Yan, S. V. Kesava, E. D. Gomez, and N. C. Giebink, "Passive parity-time symmetry in organic thin film waveguides," ACS Photonics, Vol. 2, No. 2, 319-325, 2015.

    46. Feng, L., et al., "Demonstration of a large-scale optical exceptional point structure," Optics Express, Vol. 22, No. 2, 1760-1767, 2014.

    47. Huang, Y., C. Min, and G. Veronis, "Broadband near total light absorption in non-PT-symmetric waveguide-cavity systems," Optics Express, Vol. 24, No. 19, 22219-22231, 2016.

    48. Huang, Y., G. Veronis, and C. Min, "Unidirectional reflectionless propagation in plasmonic waveguide-cavity systems at exceptional points," Optics Express, Vol. 23, No. 23, 29882-29895, 2015.

    49. Min, S. Y., J. Y. Kim, S. Yu, S. G. Menabde, and M. S. Jang, "Exceptional points in plasmonic waveguides do not require gain or loss," Physical Review Applied, Vol. 14, No. 5, 054041, 2020.

    50. Wang, C., et al., "Electromagnetically induced transparency at a chiral exceptional point," Nature Physics, Vol. 16, No. 3, 334-340, 2020.

    51. Chen, H.-Z., et al., "Revealing the missing dimension at an exceptional point," Nature Physics, Vol. 16, No. 5, 571-578, 2020.

    52. Huang, X., C. Lu, C. Liang, H. Tao, and Y.-C. Liu, "Loss-induced nonreciprocity," Light: Science & Applications, Vol. 10, No. 1, 1-8, 2021.

    53. Peng, B., et al., "Loss-induced suppression and revival of lasing," Science, Vol. 346, No. 6207, 328-332, 2014.

    54. Dong, S., et al., "Loss-assisted metasurface at an exceptional point," ACS Photonics, 2020.

    55. Cao, G., et al., "Fano resonance in artificial photonic molecules," Advanced Optical Materials, Vol. 8, No. 10, 1902153, 2020.

    56. Chen, J., et al., "Manipulating mode degeneracy for tunable spectral characteristics in multi-microcavity photonic molecules," Optics Express, Vol. 29, No. 7, 11181-11193, 2021.

    57. Deng, Y., G. Cao, H. Yang, G. Li, X. Chen, and W. Lu, "Tunable and high-sensitivity sensing based on Fano resonance with coupled plasmonic cavities," Scientific Reports, Vol. 7, No. 1, 1-8, 2017.

    58. Lin, G., et al., "Ultra-compact high-sensitivity plasmonic sensor based on Fano resonance with symmetry breaking ring cavity," Optics Express, Vol. 27, No. 23, 33359-33368, 2019.

    59. Liu, Q., B. Wang, S. Ke, H. Long, K. Wang, and P. Lu, "Exceptional points in Fano-resonant graphene metamaterials," Optics Express, Vol. 25, No. 7, 7203-7212, 2017.

    60. Zhao, Y. and A. Alù, "Manipulating light polarization with ultrathin plasmonic metasurfaces," Physical Review B, Vol. 84, No. 20, 205428, 2011.

    61. Yang, H., G. Cao, X. Shang, T. Li, G. Yang, and G. Li, "Anisotropic metasurfaces for efficient polarization independent wavefront steering," Journal of Physics D: Applied Physics, Vol. 53, No. 4, 045104, 2019.

    62. Ou, K., et al., "High efficiency focusing vortex generation and detection with polarization-insensitive dielectric metasurfaces," Nanoscale, Vol. 10, No. 40, 19154-19161, 2018.

    63. Yang, H., et al., "Polarization-independent metalens constructed of antennas without rotational invariance," Optics Letters, Vol. 42, No. 19, 3996-3999, 2017.

    64. Cao, T., Y. Cao, and L. Fang, "Reconfigurable parity-time symmetry transition in phase change metamaterials," Nanoscale, Vol. 11, No. 34, 15828-15835, 2019.

    65. Park, S. H., et al., "Observation of an exceptional point in a non-Hermitian metasurface," Nanophotonics, Vol. 9, No. 5, 1031-1039, 2020.

    66. Dembowski, C., et al., "Experimental observation of the topological structure of exceptional points," Physical Review Letters, Vol. 86, No. 5, 787, 2001.

    67. Doppler, J., et al., "Dynamically encircling an exceptional point for asymmetric mode switching," Nature, Vol. 537, No. 7618, 76-79, 2016.

    68. Wu, T., et al., "Vector exceptional points with strong superchiral fields," Physical Review Letters, Vol. 124, No. 8, 083901, 2020.

    69. Li, J., J. Fu, Q. Liao, and S. Ke, "Exceptional points in chiral metasurface based on graphene strip arrays," JOSA B, Vol. 36, No. 9, 2492-2498, 2019.

    70. Leung, H. M., et al., "Exceptional point-based plasmonic metasurfaces for vortex beam generation," Optics Express, Vol. 28, No. 1, 503-510, 2020.

    71. Kang, M., W. Zhu, and I. D. Rukhlenko, "Experimental observation of the topological structure of exceptional points in an ultrathin hybridized metamaterial," Physical Review A, Vol. 96, No. 6, 063823, 2017.

    72. Li, S., et al., "Exceptional point in a metal-graphene hybrid metasurface with tunable asymmetric loss," Optics Express, Vol. 28, No. 14, 20083-20094, 2020.

    73. Chen, H.-T., A. J. Taylor, and N. Yu, "A review of metasurfaces: Physics and applications," Reports on Progress in Physics, Vol. 79, No. 7, 076401, 2016.

    74. Jahani, S. and Z. Jacob, "All-dielectric metamaterials," Nature Nanotechnology, Vol. 11, No. 1, 23-36, 2016.

    75. Nye, N., A. Halawany, C. Markos, M. Khajavikhan, and D. Christodoulides, "Flexible PT-symmetric optical metasurfaces," Physical Review Applied, Vol. 13, No. 6, 064005, 2020.

    76. Zhao, B., L.-S. Sun, and J. Chen, "Hybrid parity-time modulation phase and geometric phase in metasurfaces," Optics Express, Vol. 28, No. 20, 28896-28905, 2020.

    77. Wiersig, J., "Sensors operating at exceptional points: General theory," Physical Review A, Vol. 93, No. 3, 033809, 2016.

    78. Chen, W., S. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang, "Exceptional points enhance sensing in an optical microcavity," Nature, Vol. 548, No. 7666, 192-196, 2017.

    79. Dong, Z., Z. Li, F. Yang, C.-W. Qiu, and J. S. Ho, "Sensitive readout of implantable microsensors using a wireless system locked to an exceptional point," Nature Electronics, Vol. 2, No. 8, 335-342, 2019.

    80. Jin, B., et al., "High-performance terahertz sensing at exceptional points in a bilayer structure," Advanced Theory and Simulations, Vol. 1, No. 9, 1800070, 2018.

    81. Ma, Y., et al., "Semiconductor-based plasmonic interferometers for ultrasensitive sensing in a terahertz regime," Optics Letters, Vol. 42, No. 12, 2338-2341, 2017.

    82. Grognot, M. and G. Gallot, "Quantitative measurement of permeabilization of living cells by terahertz attenuated total reflection," Applied Physics Letters, Vol. 107, No. 10, 103702, 2015.

    83. Farhat, M., M. Yang, Z. Ye, and P.-Y. Chen, "PT-symmetric absorber-laser enables electromagnetic sensors with unprecedented sensitivity," ACS Photonics, Vol. 7, No. 8, 2080-2088, 2020.

    84. Xiao, S., J. Gear, S. Rotter, and J. Li, "Effective PT-symmetric metasurfaces for subwavelength amplified sensing," New Journal of Physics, Vol. 18, No. 8, 085004, 2016.

    85. Park, J.-H., et al., "Symmetry-breaking-induced plasmonic exceptional points and nanoscale sensing," Nature Physics, Vol. 16, No. 4, 462-468, 2020.

    86. Mortensen, N. A., P. Gonçalves, M. Khajavikhan, D. N. Christodoulides, C. Tserkezis, and C. Wolff, "Fluctuations and noise-limited sensing near the exceptional point of parity-time-symmetric resonator systems," Optica, Vol. 5, No. 10, 1342-1346, 2018.

    87. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of Img Align = Absmiddle Alt = ε Eps/Img and μ," Physics-Uspekhi, Vol. 10, No. 4, 509-514, 1968.

    88. Fleury, R., D. L. Sounas, and A. Alú, "Negative refraction and planar focusing based on parity-time symmetric metasurfaces," Physical Review Letters, Vol. 113, No. 2, 023903, 2014.

    89. Valagiannopoulos, C., F. Monticone, and A. Alù, "PT-symmetric planar devices for field transformation and imaging," Journal of Optics, Vol. 18, No. 4, 044028, 2016.

    90. Sounas, D. L., R. Fleury, and A. Alù, "Unidirectional cloaking based on metasurfaces with balanced loss and gain," Physical Review Applied, Vol. 4, No. 1, 014005, 2015.

    91. Monticone, F., C. A. Valagiannopoulos, and A. Alù, "Parity-time symmetric nonlocal metasurfaces: All-angle negative refraction and volumetric imaging," Physical Review X, Vol. 6, No. 4, 041018, 2016.

    92. Barnes, W. L., A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, Vol. 424, No. 6950, 824-830, 2003.

    93. Tian, X., et al., "Wireless body sensor networks based on metamaterial textiles," Nature Electronics, Vol. 2, No. 6, 243-251, 2019.

    94. Pendry, J., L. Martin-Moreno, and F. Garcia-Vidal, "Mimicking surface plasmons with structured surfaces," Science, Vol. 305, No. 5685, 847-848, 2004.

    95. Coppolaro, M., M. Moccia, G. Castaldi, A. Alù, and V. Galdi, "Surface-wave propagation on non-hermitian metasurfaces with extreme anisotropy," IEEE Transactions on Microwave Theory and Techniques, Vol. 69, No. 4, 2060-2071, 2021.

    96. Gomez-Diaz, J. S., M. Tymchenko, and A. Alù, "Hyperbolic plasmons and topological transitions over uniaxial metasurfaces," Physical Review Letters, Vol. 114, No. 23, 233901, 2015.

    97. Gomez-Diaz, J., M. Tymchenko, and A. Alù, "Hyperbolic metasurfaces: Surface plasmons, light-matter interactions, and physical implementation using graphene strips," Optical Materials Express, Vol. 5, No. 10, 2313-2329, 2015.

    98. Moccia, M., G. Castaldi, A. Alù, and V. Galdi, "Line waves in non-hermitian metasurfaces," ACS Photonics, Vol. 7, No. 8, 2064-2072, 2020.

    99. Horsley, S. and I. R. Hooper, "One dimensional electromagnetic waves on flat surfaces," Journal of Physics D: Applied Physics, Vol. 47, No. 43, 435103, 2014.

    100. Dia’aaldin, J. B. and D. F. Sievenpiper, "Guiding waves along an infinitesimal line between impedance surfaces," Physical Review Letters, Vol. 119, No. 10, 106802, 2017.

    101. Sakhdari, M., N. M. Estakhri, H. Bagci, and P.-Y. Chen, "Low-threshold lasing and coherent perfect absorption in generalized PT-symmetric optical structures," Physical Review Applied, Vol. 10, No. 2, 024030, 2018.

    102. Lodahl, P., et al., "Chiral quantum optics," Nature, Vol. 541, No. 7638, 473-480, 2017.

    103. Zhang, Y.-R., J.-Q. Yuan, Z.-Z. Zhang, M. Kang, and J. Chen, "Exceptional singular resonance in gain mediated metamaterials," Optics Express, Vol. 27, No. 5, 6240-6248, 2019.

    104. Xiao, L., et al., "Non-Hermitian bulk-boundary correspondence in quantum dynamics," Nature Physics, 1-6, 2020.

    105. Okuma, N., K. Kawabata, K. Shiozaki, and M. Sato, "Topological origin of non-Hermitian skin effects," Physical Review Letters, Vol. 124, No. 8, 086801, 2020.

    106. Wang, K., A. Dutt, K. Y. Yang, C. C. Wojcik, J. Vučković, and S. Fan, "Generating arbitrary topological windings of a non-Hermitian band," Science, Vol. 371, No. 6535, 1240-1245, 2021.

    107. Budich, J. C. and E. J. Bergholtz, "Non-Hermitian topological sensors," Physical Review Letters, Vol. 125, No. 18, 180403, 2020.

    108. Song, J., et al., "Wireless power transfer via topological modes in dimer chains," Physical Review Applied, Vol. 15, No. 1, 014009, 2021.

    109. Li, H., H. Moussa, D. Sounas, and A. Alù, "Parity-time symmetry based on time modulation," Physical Review Applied, Vol. 14, No. 3, 031002, 2020.

    110. Wong, Z. J., et al., "Lasing and anti-lasing in a single cavity," Nature Photonics, Vol. 10, No. 12, 796-801, 2016.

    111. Wang, J., F. Sciarrino, A. Laing, and M. G. Thompson, "Integrated photonic quantum technologies," Nature Photonics, Vol. 14, No. 5, 273-284, 2020.

    112. Wang, H., S. Assawaworrarit, and S. Fan, "Dynamics for encircling an exceptional point in a nonlinear non-Hermitian system," Optics Letters, Vol. 44, No. 3, 638-641, 2019.

    113. Shaltout, A. M., V. M. Shalaev, and M. L. Brongersma, "Spatiotemporal light control with active metasurfaces," Science, Vol. 364, No. 6441, 2019.

    114. Zhong, Q., J. Ren, M. Khajavikhan, D. N. Christodoulides, S. Özdemir, and R. El-Ganainy, "Sensing with exceptional surfaces in order to combine sensitivity with robustness," Physical Review Letters, Vol. 122, No. 15, 153902, 2019.

    115. Gu, Z., et al., "Topologically protected exceptional point with local non-hermitian modulation in an acoustic crystal," Physical Review Applied, Vol. 15, No. 1, 014025, 2021.

    116. Moskovits, M., "Surface-enhanced spectroscopy," Reviews of Modern Physics, Vol. 57, No. 3, 783, 1985.

    117. Alaee, R., B. Gurlek, J. Christensen, and M. Kadic, "Optical force rectifiers based on PT-symmetric metasurfaces," Physical Review B, Vol. 97, No. 19, 195420, 2018.

    118. Li, Z., X. Tian, C.-W. Qiu, and J. S. Ho, "Metasurfaces for bioelectronics and healthcare," Nature Electronics, 1-10, 2021.

    119. Barchiesi, E., M. Spagnuolo, and L. Placidi, "Mechanical metamaterials: A state of the art," Mathematics and Mechanics of Solids, Vol. 24, No. 1, 212-234, 2019.

    120. Li, Y., et al., "Transforming heat transfer with thermal metamaterials and devices," Nature Reviews Materials, 1-20, 2021.