Vol. 167

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2020-02-23

Multi-Objective Genetic Algorithm Optimization of Frequency Selective Metasurfaces to Engineer Ku-Passband Filter Responses

By Kenneth W. Allen, Daniel J. P. Dykes, David R. Reid, and Richard Todd Lee
Progress In Electromagnetics Research, Vol. 167, 19-30, 2020
doi:10.2528/PIER19112609

Abstract

Metasurfaces enable a new avenue to create electrically thin multi-layer structures, on the order of one-tenth the central wavelength (λc), with engineered responses. Altering the sub-wavelength spatial features, e.g. λc/80, on the surface leads to highly tunable electromagnetic scattering characteristics. In this work, we develop an ultra-wideband frequency selective metasurface (FSmS) that completely encompasses the Ku-band from 12-18 GHz with steep band edges. The geometrical structure of the metasurfaces is optimized by a multi-objective genetic algorithm mimicking evolutionary processes. Analysis is performed from one- to four-layer metasurface structures with various thicknesses. Computational electromagnetic simulations for these frequency selective metasurfaces (FSmS) are presented and discussed. The concepts presented in this work can be applied to design metasurfaces and metamaterials from the microwave to the optical regimes.

Citation


Kenneth W. Allen, Daniel J. P. Dykes, David R. Reid, and Richard Todd Lee, "Multi-Objective Genetic Algorithm Optimization of Frequency Selective Metasurfaces to Engineer Ku-Passband Filter Responses," Progress In Electromagnetics Research, Vol. 167, 19-30, 2020.
doi:10.2528/PIER19112609
http://jpier.org/PIER/pier.php?paper=19112609

References


    1. Pendry, J. B., et al., "Extremely low frequency plasmons in metallic mesostructures," Physical Review Letters, Vol. 76, No. 25, 4773, 1996.
    doi:10.1103/PhysRevLett.76.4773

    2. Pendry, J. B., et al., "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2075-2084, 1999.
    doi:10.1109/22.798002

    3. Valentine, J., et al., "Three-dimensional optical metamaterial with a negative refractive index," Nature, Vol. 455, No. 7211, 376, 2008.
    doi:10.1038/nature07247

    4. Landy, N. I., et al., "Perfect metamaterial absorber," Physical Review Letters, Vol. 100, No. 20, 207402, 2008.
    doi:10.1103/PhysRevLett.100.207402

    5. Schurig, D., et al., "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, No. 5801, 977-980, 2006.
    doi:10.1126/science.1133628

    6. Enoch, S., et al., "A metamaterial for directive emission," Physical Review Letters, Vol. 89, No. 21, 213902, 2002.
    doi:10.1103/PhysRevLett.89.213902

    7. Chen, H. T., et al., "Active terahertz metamaterial devices," Nature, Vol. 444, No. 7119, 597, 2006.
    doi:10.1038/nature05343

    8. Lu, D. and Z. Liu, "Hyperlenses and metalenses for far-field super-resolution imaging," Nature Communications, Vol. 3, 1205, 2012.
    doi:10.1038/ncomms2176

    9. Wakatsuchi, H., et al., "Circuit-based nonlinear metasurface absorbers for high power surface currents," Applied Physics Letters, Vol. 102, No. 21, 214103, 2013.
    doi:10.1063/1.4809535

    10. Wakatsuchi, H., et al., "Waveform-dependent absorbing metasurfaces," Physical Review Letters, Vol. 111, No. 24, 245501, 2013.
    doi:10.1103/PhysRevLett.111.245501

    11. Wakatsuchi, H., et al., "Experimental demonstration of nonlinear waveform-dependent metasurface absorber with pulsed signals," Electronics Letters, Vol. 49, No. 24, 1530-1531, 2013.
    doi:10.1049/el.2013.3010

    12. Wakatsuchi, H., et al., "Responses of waveform-selective absorbing metasurfaces to oblique waves at the same frequency," Scientific Reports, Vol. 6, 31371, 2016.
    doi:10.1038/srep31371

    13. Wakatsuchi, H., "Time-domain filtering of metasurfaces," Scientific Reports, Vol. 5, 16737, 2015.
    doi:10.1038/srep16737

    14. Eleftheriades, G. V., "Electronics: Protecting the weak from the strong," Nature, Vol. 505, No. 7484, 490, 2014.
    doi:10.1038/nature12852

    15. Xu, H. X., et al., "Tunable microwave metasurfaces for high-performance operations: Dispersion compensation and dynamical switch," Scientific Reports, Vol. 6, 38255, 2016.
    doi:10.1038/srep38255

    16. Genevet, P., et al., "Recent advances in planar optics: From plasmonic to dielectric metasurfaces," Optica, Vol. 4, No. 1, 139-152, 2017.
    doi:10.1364/OPTICA.4.000139

    17. Balthasar Mueller, J. P., et al., "Metasurface polarization optics: Independent phase control of arbitrary orthogonal states of polarization," Physical Review Letters, Vol. 118, No. 11, 113901, 2017.
    doi:10.1103/PhysRevLett.118.113901

    18. Khorasaninejad, M., et al., "Polarization-insensitive metalenses at visible wavelengths," Nano Letters, Vol. 16, No. 11, 7229-7234, 2016.
    doi:10.1021/acs.nanolett.6b03626

    19. Byrnes, S. J., et al., "Designing large, high-efficiency, high-numerical-aperture, transmissive metalenses for visible light," Optics Express, Vol. 24, No. 5, 5110-5124, 2016.
    doi:10.1364/OE.24.005110

    20. Filippo, C., A. Monorchio, and G. Manara, "Wideband scattering diffusion by using diffraction of periodic surfaces and optimized unit cell geometries," Scientific Reports, Vol. 6, 25458, 2016.

    21. Xu, H. X., et al., "Flexible control of highly-directive emissions based on bifunctional metasurfaces with low polarization cross-talking," Annalen der Physik, Vol. 529, No. 5, 1700045, 2017.
    doi:10.1002/andp.201700045

    22. Zhao, J., et al., "Fast design of broadband terahertz diffusion metasurfaces," Optics Express, Vol. 25, No. 2, 1050-1061, 2017.
    doi:10.1364/OE.25.001050

    23. Zhang, Y., et al., "Broadband diffuse terahertz wave scattering by flexible metasurface with randomized phase distribution," Scientific Reports, Vol. 6, 26875, 2016.
    doi:10.1038/srep26875

    24. Miller, P., "Ka-band — The future of satellite communication," TELE-Satellite and Broadband, Vol. 1, No. 9, 12-14, 2007.

    25. Padilla, P., "Electronically reconfigurable transmit array at Ku band for microwave applications," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 8, 2571-2579, 2010.
    doi:10.1109/TAP.2010.2050426

    26. Borji, A., D. Busuioc, and S. Safavi-Naeini, "Efficient, low-cost integrated waveguide-fed planar antenna array for Ku-band applications," IEEE Antenna and Wireless Propagation Letters, Vol. 8, 336-339, 2009.
    doi:10.1109/LAWP.2008.2004973

    27. Weile, D. S. and E. Michielssen, "Genetic algorithm optimization applied to electromagnetics: A review," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 3, 343-353, 1997.
    doi:10.1109/8.558650

    28. Reid, D. R. and G. S. Smith, "Design and optimization of Fresnel zone plates using a genetic algorithm and a full-electromagnetic simulator," Microwave and Optical Technology Letters, Vol. 51, No. 9, 2223-2227, 2009.
    doi:10.1002/mop.24520

    29. Scott, M. M., et al., "Permittivity and permeability determination for high index specimens using partially filled shorted rectangular waveguides," Microwave and Optical Technology Letters, Vol. 58, No. 6, 1298-1301, 2016.
    doi:10.1002/mop.29786

    30. Allen, K. W., et al., "An X-band waveguide measurement technique for the accurate characterization of materials with low dielectric loss permittivity," Review of Scientific Instruments, Vol. 87, 054703, 2016.
    doi:10.1063/1.4948388

    31. Monticone, F. and A. Alu, "Invisibility exposed: Physical bounds on passive cloaking," Optica, Vol. 3, No. 7, 718-724, 2016.
    doi:10.1364/OPTICA.3.000718

    32. Maloney, J. G., R. T. Lee, and D. W. Landgren, "Genetic algorithms for fragmented aperture antennas: A complete evaluation of a 24-bit design," Radio Science Meeting (Joint with IEEE AP-S Symposium), 2013 USNC-URSI, 115-115, 2013.
    doi:10.1109/USNC-URSI.2013.6715421

    33. Munk, B. A., Frequency Selective Surface Theory and Design, Wiley & Sons, New York, 2000.
    doi:10.1002/0471723770

    34. Reid, D. R. and G. S. Smith, "A comparison of the focusing properties of a Fresnel zone plate with a doubly-hyperbolic lens for application in a free-space focused-beam measurement system," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 2, 499-507, 2009.
    doi:10.1109/TAP.2008.2011392