Vol. 166

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Green's Dyadic, Spectral Function, Local Density of States, and Fluctuation Dissipation Theorem

By Weng Cho Chew, Wei E. I. Sha, and Qi Dai
Progress In Electromagnetics Research, Vol. 166, 147-165, 2019


The spectral functions are studied in conjunction with the dyadic Green's functions for various media. The dyadic Green's functions are found using the eigenfunction expansion method for homogeneous, inhomogeneous, periodic, lossless, lossy, and anisotropic media, guided by the Bloch-Floquet theorem. For the lossless media cases, the spectral functions can be directly related to the photon local density of states, and hence, to the electromagnetic energy density. For the lossy case, the spectral function can be related to the field correlation function. Because of these properties, one can derive properties for field correlations and the Langevin-source correlations without resorting to the fluctuation dissipation theorem. The results are corroborated by the fluctuation dissipation theorem. An expression for the local density of states for lossy, inhomogeneous, and dispersive media has also been suggested.


Weng Cho Chew, Wei E. I. Sha, and Qi Dai, "Green's Dyadic, Spectral Function, Local Density of States, and Fluctuation Dissipation Theorem," Progress In Electromagnetics Research, Vol. 166, 147-165, 2019.


    1. Langevin, P., "Sur la thorie du mouvement brownien [On the Theory of Brownian Motion]," C. R. Acad. Sci. (Paris), Vol. 146, 530-533, 1908.

    2. Johnson, J., "Thermal agitation of electricity in conductors," Phys. Rev., Vol. 32, 97, 1928.

    3. Nyquist, H., "Thermal agitation of electric charge in conductors," Phys. Rev., Vol. 32, 110, 1928.

    4. Haus, H. A., Electromagnetic Noise and Quantum Optical Measurements, Springer, 2000.

    5. Callen, H. B. and T. A. Welton, "Irreversibility and generalized noise," Phys. Rev., Vol. 83, No. 1, 34, 1951.

    6. Rytov, S., Y. Kravtsov, and V. Tatarskii, Principles of Statistical Radiophysics, Vol. 3, Springer- Verlag, Berlin, 1989.

    7. Kubo, R., "The fluctuation-dissipation theorem," Rep. Prog. Phys., Vol. 29, 255-284, 1966.

    8. Landau, L. D., E. M. Lifshitz, and L. P. Pitaevskii, Statistical Physics. Part 2, Pergamon Press, Oxford, UK, 1980.

    9. Casimir, H. B. G., "On the attraction between two perfectly conducting plates," Proceedings of the Royal Netherlands Academy of Arts and Sciences, Vol. 51, 793-795, 1948.

    10. Casimir, H. B. G. and D. Polder, "The influence of retardation on the London-van der Waals forces," Phys. Rev., Vol. 73, 360-372, 1948.

    11. Lifshitz, E. M., "The theory of molecular attractive forces between solids," Sov. Phys. JETP, Vol. 2, 73, 1956.

    12. Van Kampen, N. G., B. R. A. Nijboer, and K. Schram, "On the macroscopic theory of van der Waals forces," Phys. Lett., Vol. 26A, No. 7, 307-308, 1968.

    13. Milonni, P. W., The Quantum Vacuum: An Introduction to Quantum Electrodynamics, Academic Press, San Diego, CA, 1994.

    14. Lamoreaux, S. K., "Demonstration of the casimir force in the 0.6 to 6 μm range," Phys. Rev. Lett., Vol. 78, No. 1, 5-8, 1997.

    15. Sernelius, B. E., "Casimir force and complications in the Van Kampen theory for dissipative systems," Phys. Rev. B, Vol. 74, 233103, 2006.

    16. Rodriguez, A., M. Ibanescu, D. Iannuzzi, J. D. Joannopoulos, and S. G. Johnson, "Virtual photons in imaginary time: Computing exact Casimir forces via standard numerical electromagnetism techniques," Phys. Rev. A, Vol. 76, No. 3, 032106, 2007.

    17. Capasso, F., J. Munday, D. Iannuzzi, and H. Chan, "Casimir forces and quantum electrodynamical torques: Physics and nanomechanics," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 13, No. 2, 400-414, Mar.–Apr. 2007.

    18. Munday, J. N., F. Capasso, and V. A. Parsegian, "Measured long-range repulsive Casimir-Lifshitz forces," Nature, Vol. 457, 170, 2009.

    19. Rahi, S. J., T. Emig, N. Graham, R. L. Jae, and M. Kardar, "Scattering theory approach to electrodynamic Casimir forces," Phys. Rev. D, Vol. 80, 085021, 2009.

    20. Xiong, J. L., M. S. Tong, P. Atkins, and W. C. Chew, "Efficient evaluation of Casimir force in arbitrary three-dimensional geometries by integral equation methods," Phys. Lett. A, Vol. 374, 2517-2520, 2010.

    21. Rosa, F. S. S., D. A. R. Dalvit, and P. Milonni, "Electromagnetic energy, absorption, and Casimir forces. II. Inhomogeneous dielectric media," Phys. Rev. A, Vol. 84, 053813, 2011.

    22. Narayanaswamy, A. and G. Chen, "Dyadic Green’s functions and electromagnetic local density of states," Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 111, No. 12, 1877-1884, 2010.

    23. Greet, J.-J., R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, "Coherent emission of light by thermal sources," Nature, Vol. 416, No. 6876, 61-64, 2002.

    24. Joulain, K., J.-P. Mulet, F. Marquier, R. Carminati, and J.-J. Greffet, "Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field," Surface Science Reports, Vol. 57, No. 3, 59-112, 2005.

    25. Sprik, R., B. A. van Tiggelen, and A. Lagendijk, "Optical emission in periodic dielectrics," Europhys. Lett., Vol. 35, No. 4, 265-270, 1996.

    26. Jones, A. C., B. T. O’Callahan, H. U. Yang, and M. B. Raschke, "The thermal near-field: Coherence, spectroscopy, heat-transfer, and optical forces," Progress in Surface Science, Vol. 88, No. 4, 349-392, 2013.

    27. Keldysh, L. V., "Diagram technique for nonequilibrium processes," Sov. Phys. JETP, Vol. 20, No. 4, 1018-1026, 1965.

    28. Datta, S., Quantum Transport: Atom to Transistor, Cambridge University Press, 2005.

    29. Van Tiggelen, B. A. and E. Kogan, "Analogies between light and electrons: Density of states and Friedels identity," Phys. Rev. A, Vol. 49, No. 2, 708, 1994.

    30. Dirac, P. A. M., "The quantum theory of the emission and absorption of radiation," Proceedings of the Royal Society of London A, Vol. 114, No. 767, 243265, 1927.

    31. Glauber, R. J. and M. Lewenstein, "Quantum optics of dielectric media," Phys. Rev. A, Vol. 43, No. 1, 467, 1991.

    32. Milonni, P. W., "Field quantization and radiative processes in dispersive dielectric media," Journal of Modern Optics, Vol. 42, No. 10, 1991-2004, 1995.

    33. Garrison, J. C. and R. Y. Chiao, Quantum Optics, Oxford Univ. Press, 2008.

    34. Hopfield, J. J., "Theory of the contribution of excitons to the complex dielectric constant of crystals," Phys. Rev., Vol. 112, No. 5, 1555, 1958.

    35. Caldeira, A. and A. J. Leggett, "Influence of dissipation on quantum tunneling in macroscopic systems," Phys. Rev. Lett., Vol. 46, 211, 1981.

    36. Huttner, B. and S. M. Barnett, "Quantization of the electromagnetic field in dielectrics," Phys. Rev. A, Vol. 46, No. 7, 4306, 1992.

    37. Grunner, T. and D.-G. Welsch, "Green-function approach to the radiation-field quantization for homogeneous and inhomogeneous Kramers-Kronig dielectrics," Phys. Rev. A, Vol. 53, No. 3, 1818, 1996.

    38. Dung, H. T., L. Knoll, and D.-G. Welsch, "Three-dimensional quantization of the electromagnetic field in dispersive and absorbing inhomogeneous dielectrics," Phys. Rev. A, Vol. 57, No. 5, 3931, 1998.

    39. Dung, H. T., S. Y. Buhmann, L. Knoll, D.-G. Welsch, S. Scheel, and J. Kastel, "Electromagneticfield quantization and spontaneous decay in left-handed media," Phys. Rev. A, Vol. 68, No. 4, 043816, 2003.

    40. Scheel, S. and S. Y. Buhmann, "Macroscopic quantum electrodynamicsconcepts and applications," Acta Physica Slovaca, Vol. 58, No. 5, 675-809, Oct. 2008.

    41. Tai, C. T., Dyadic Green Functions in Electromagnetic Theory, Vol. 272, IEEE Press, New York, 1994.

    42. Chew, W. C., Waves and Fields in Inhomogeneous Media, Vol. 522, IEEE Press, New York, 1995 (First Printing, Van Nostrand Reinhold, 1990).

    43. Chew, W. C., M. S. Tong, and B. Hu, Integral Equation Methods for Electromagnetic and Elastic Waves, Morgan & Claypool Publishers, 2008.

    44. Gerry, C. and P. Knight, Introductory Quantum Optics, Cambridge University Press, 2005.

    45. Fox, M., Quantum Optics: An Introduction, Vol. 6, Oxford University Press, 2006.

    46. Feynman, R. P., R. B. Leighton, and M. Sands, The Feynman Lectures on Physics, Vol. 1, 41-1, Basic Books, 2013.

    47. Kronig, R. and H. A. Kramers, "Absorption and dispersion in X-ray spectra," Z. Phys., Vol. 48, 174, 1928.

    48. Dai, Q. I., Y. H. Lo, W. C. Chew, Y. G. Liu, and L. J. Jiang, "Generalized modal expansion and reduced modal representation of 3-D electromagnetic fields," IEEE Transactions on Antennas and Propagation, Vol. 62, 783-793, Feb. 2014.

    49. Jones, A. C. and M. Raschke, "Thermal infrared near-field spectroscopym," Nano Letters, Vol. 12, No. 3, 1475-1481, 2012.

    50. Sapienza, R., T. Coenen, J. Renger, M. Kuttge, N. F. van Hulst, and A. Polman, "Deepsubwavelength imaging of the modal dispersion of light," Nature Materials, Vol. 11, No. 9, 781-787, 2012.

    51. Loudon, R., "The propagation of electromagnetic energy through an absorbing dielectric," Journal of Physics A: General Physics, Vol. 3, No. 3, 233, 1970.

    52. Ruppin, R., "Electromagnetic energy density in a dispersive and absorptive material," Phys. Lett. A, Vol. 299, No. 2, 309-312, 2002.

    53. Busch, K. and S. John, "Photonic band gap formation in certain self-organizing systems," Phys. Rev. E, Vol. 58, No. 3, 3896, 1998.

    54. Kong, J. A., Theory of Electromagnetic Waves, Vol. 348, 1, Wiley-Interscience, New York, 1975.