Vol. 166

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2019-12-17

Phaseless Microwave Imaging of Dielectric Cylinders: an Artificial Neural Networks-Based Approach

By Jesús E. Fajardo, Julián Galván, Fernando Vericat, Carlos Manuel Carlevaro, and Ramiro Miguel Irastorza
Progress In Electromagnetics Research, Vol. 166, 95-105, 2019
doi:10.2528/PIER19080610

Abstract

An inverse method for parameters estimation of dielectric cylinders (dielectric properties, location, and radius) from amplitude-only microwave information is presented. To this end two different Artificial Neural Networks (ANN) topologies were compared; a Multilayer Perceptron (MLP) and a Convolutional Neural Network (CNN). Several two-dimensional (2D) simulations, with different sizes and locations of homogeneous dielectric cylinders employing the Finite Differences Time Domain (FDTD) method, were performed to generate training, validation, and test sets for both ANN models. The prediction errors were lower for the CNN in high Signal-to-Noise Ratio (SNR) scenarios, although the MLP was more robust in low SNR situations. The CNN model performance was also tested for 2D simulations of dielectrically homogeneous and heterogeneous cylinders placed in acrylic holders showing potential experimental applications. Moreover, the CNN was also tested for a three-dimensional model simulated as realistic as possible, showing good results in predicting all parameters directly from the S-parameters.

Citation


Jesús E. Fajardo, Julián Galván, Fernando Vericat, Carlos Manuel Carlevaro, and Ramiro Miguel Irastorza, "Phaseless Microwave Imaging of Dielectric Cylinders: an Artificial Neural Networks-Based Approach," Progress In Electromagnetics Research, Vol. 166, 95-105, 2019.
doi:10.2528/PIER19080610
http://jpier.org/PIER/pier.php?paper=19080610

References


    1. Pastorino, M., Microwave Imaging, John Wiley & Sons, 2010.
    doi:10.1002/9780470602492

    2. Costanzo, S., G. Di Massa, M. Pastorino, and A. Randazzo, "Hybrid microwave approach for phaseless imaging of dielectric targets," IEEE Geoscience and Remote Sensing Letters, Vol. 12, No. 4, 851-854, 2015.
    doi:10.1109/LGRS.2014.2364077

    3. Caorsi, S., A. Massa, M. Pastorino, and A. Randazzo, "Electromagnetic detection of dielectric scatterers using phaseless synthetic and real data and the memetic algorithm," IEEE Transactions on Geoscience and Remote Sensing, Vol. 41, No. 12, 2745-2753, 2003.
    doi:10.1109/TGRS.2003.815676

    4. Li, L., W. Zhang, and F. Li, "Tomographic reconstruction using the distorted Rytov iterative method with phaseless data," IEEE Geoscience and Remote Sensing Letters, Vol. 5, No. 3, 479-483, 2008.
    doi:10.1109/LGRS.2008.919818

    5. Li, L., H. Zheng, and F. Li, "Two-dimensional contrast source inversion method with phaseless data: TM case," IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 6, 1719-1736, 2008.

    6. Bermani, E., S. Caorsi, and M. Raffetto, "Microwave detection and dielectric characterization of cylindrical objects from amplitude-only data by means of neural networks," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 9, 1309-1314, 2002.
    doi:10.1109/TAP.2002.801274

    7. Alvarez, Y., M. Garcia-Fernandez, L. Poli, C. Garcıa-Gonzalez, P. Rocca, A. Massa, and F. Las- Heras, "Inverse scattering for monochromatic phaseless measurements," IEEE Transactions on Instrumentation and Measurement, Vol. 66, No. 1, 45-60, 2016.
    doi:10.1109/TIM.2016.2615478

    8. Li, L., L. G. Wang, F. L. Teixeira, C. Liu, A. Nehorai, and T. J. Cui, "Deepnis: Deep neural network for nonlinear electromagnetic inverse scattering," IEEE Transactions on Antennas and Propagation, 2018.
    doi:10.1109/TAP.2017.2768562

    9. Kamilov, U. S., D. Liu, H. Mansour, and P. T. Boufounos, "A recursive born approach to nonlinear inverse scattering," IEEE Signal Processing Letters, Vol. 23, No. 8, 1052-1056, 2016.
    doi:10.1109/LSP.2016.2579647

    10. Goodfellow, I., Y. Bengio, and A. Courville, Deep Learning, MIT press, 2016.

    11. Wei, Z. and X. Chen, "Deep-learning schemes for full-wave nonlinear inverse scattering problems," IEEE Transactions on Geoscience and Remote Sensing, 2018.

    12. Jin, K. H., M. T. McCann, E. Froustey, and M. Unser, "Deep convolutional neural network for inverse problems in imaging," IEEE Transactions on Image Processing, Vol. 26, No. 9, 4509-4522, 2017.
    doi:10.1109/TIP.2017.2713099

    13. Ronneberger, O., P. Fischer, and T. Brox, "U-net: Convolutional networks for biomedical image segmentation," International Conference on Medical Image Computing and Computer-assisted Intervention, 234-241, Springer, 2015.

    14. Meaney, P. M., T. Zhou, D. Goodwin, A. Golnabi, E. A. Attardo, and K. D. Paulsen, "Bone dielectric property variation as a function of mineralization at microwave frequencies," Journal of Biomedical Imaging, Vol. 7, 2012.

    15. Meaney, P. M., D. Goodwin, A. Golnabi, T. Zhou, M. Pallone, S. Geimer, G. Burke, and K. D. Paulsen, "Clinical microwave tomographic imaging of the calcaneus: A first-in-human case study of two subjects," IEEE transactions on biomedical engineering, Vol. 59, No. 12, 3304-3313, 2012.
    doi:10.1109/TBME.2012.2209202

    16. Oskooi, A. F., D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, "MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method," Computer Physics Communications, Vol. 181, 687-702, January 2010.
    doi:10.1016/j.cpc.2009.11.008

    17. Harrington, R. F., Time-harmonic Electromagnetic Fields, McGraw-Hill, 1961.

    18. Arslanagic, S. and O. Breinbjerg, "Electric-line-source illumination of a circular cylinder of lossless double-negative material: An investigation of near field, directivity, and radiation resistance," IEEE Antennas and Propagation Magazine, Vol. 48, No. 3, 38-54, 2006.
    doi:10.1109/MAP.2006.1703397

    19. Attardo, E. A., A. Borsic, G. Vecchi, and P. M. Meaney, "Whole-system electromagnetic modeling for microwave tomography," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 1618-1621, 2012.
    doi:10.1109/LAWP.2013.2237745

    20. Chollet, F., et al., "Keras,", https://github.com/fchollet/keras, 2015.

    21. Abadi, M., et al., "TensorFlow: Large-scale machine learning on heterogeneous systems,", 2015, software available from tensorflow.org. [Online]. Available: https://www.tensorflow.org/.

    22. Ruder, S., "An overview of gradient descent optimization algorithms,", arXiv preprint arXiv:1609.04747, 2016.

    23. Nair, V. and G. R. Hinton, "Rectified linear units improve restricted boltzmann machines," Proceedings of the 27th International Conference on Machine Learning (ICML-10), 807-814, 2010.

    24. Kingma, D. P. and J. Ba, "Adam: A method for stochastic optimization,", arXiv preprint arXiv:1412.6980, 2014.

    25. Sihvola, A., "Electromagnetic mixing formulas and applications," IET Electromagnetic Waves Series, Vol. 47, 1999.