Vol. 164
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2019-03-20
A Numerical Kirchhoff Simulator for GNSS-R Land Applications
By
Progress In Electromagnetics Research, Vol. 164, 119-133, 2019
Abstract
A distinct feature of GNSS-R land reflectometry is that random rough surfaces are superimposed on many levels of elevations. The rms elevations are in tens of meters which are many times larger than the microwave wavelengths at GNSS frequencies. Such multiple elevations were not considered in the coherent model nor the incoherent model. In this paper, we studied the electromagnetic scattering of this new rough surface scattering problem using Kirchhoff integral as first-principle. A numerical Kirchhoff simulator is developed to calculate the electromagnetic scattering and the power ratio in the specular direction. The integration is carried out over a footprint of 10 km by 10 km with the specular point as the center. In integration the surface discretization is as small as 2cm by 2 cm so that a total of 2.5×1011 patches are used. Parallel computing is implemented requiring a moderate amount of computer resources. The results of the power ratio of the numerical Kirchhoff simulator differ from the results of both the coherent model and incoherent model. The results show that the phase of the first Fresnel zone is random, and the power contributed by the first Fresnel zone is a small fraction of that over the 10 km by 10 km. The power ratios of the numerical Kirchhoff simulations are much larger than that of the incoherent model and smaller than the coherent model for small RMS heights. The results show that the multiple elevations in land have large effects on GNSS-R specular reflections.
Citation
Weihui Gu, Haokui Xu, and Leung Tsang, "A Numerical Kirchhoff Simulator for GNSS-R Land Applications," Progress In Electromagnetics Research, Vol. 164, 119-133, 2019.
doi:10.2528/PIER18121803
References

1. Hall, C. and R. Cordey, "Multistatic scatterometry," 1988 International Geoscience and Remote Sensing Symposium, IGARSS'88, Remote Sensing: Moving Toward the 21st Century, 561-562, 1988.
doi:10.1109/IGARSS.1988.570200

2. Martin-Neira, M., "A passive reflectometry and interferometry system (PARIS): Application to ocean altimetry," ESA Journal, Vol. 17, 331-355, 1993.

3. Garrison, J. L., S. J. Katzberg, and M. I. Hill, "Effect of sea roughness on bistatically scattered range coded signals from the Global Positioning System," Geophysical Research Letters, Vol. 25, 2257-2260, 1998.
doi:10.1029/98GL51615

4. Zavorotny, V. U. and A. G. Voronovich, "Scattering of GPS signals from the ocean with wind remote sensing application," IEEE Transactions on Geoscience and Remote Sensing, Vol. 38, 951-964, 2000.
doi:10.1109/36.841977

5. Fabra, F., E. Cardellach, A. Rius, S. Ribo, S. Oliveras, O. Nogues-Correig, et al. "Phase altimetry with dual polarization GNSS-R over sea ice," IEEE Transactions on Geoscience and Remote Sensing, Vol. 50, 2112-2121, 2012.
doi:10.1109/TGRS.2011.2172797

6. Larson, K. M., E. D. Gutmann, V. U. Zavorotny, J. J. Braun, M. W. Williams, and F. G. Nievinski, "Can we measure snow depth with GPS receivers?," Geophysical Research Letters, Vol. 36, 2009.
doi:10.1029/2009GL039430

7. Gleason, S., M. Adjrad, and M. Unwin, "Sensing ocean, ice and land reflected signals from space: Results from the UK-DMC GPS reflectometry experiment," Proceedings of the 2005 ION GNSS Technical Meeting, 13-16, 2005.

8. Zavorotny, V. U., S. Gleason, E. Cardellach, and A. Camps, "Tutorial on remote sensing using GNSS bistatic radar of opportunity," IEEE Geoscience and Remote Sensing Magazine, Vol. 2, 8-45, 2014.
doi:10.1109/MGRS.2014.2374220

9. Ruf, C., P. Chang, M. Clarizia, S. Gleason, Z. Jelenak, J. Murray, et al. CYGNSS Handbook, Michigan Pub., Ann Arbor, MI, 2016.

10. Clarizia, M. P. and C. S. Ruf, "Wind speed retrieval algorithm for the Cyclone Global Navigation Satellite System (CYGNSS) mission," IEEE Transactions on Geoscience and Remote Sensing, Vol. 54, 4419-4432, 2016.
doi:10.1109/TGRS.2016.2541343

11. Ruf, C. S., S. Gleason, and D. S. McKague, "Assessment of CYGNSS wind speed retrieval uncertainty," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018.

12. Chew, C., R. Shah, C. Zuffada, G. Hajj, D. Masters, and A. J. Mannucci, "Demonstrating soil moisture remote sensing with observations from the UK TechDemoSat-1 satellite mission," Geophysical Research Letters, Vol. 43, 3317-3324, 2016.
doi:10.1002/2016GL068189

13. Camps, A., H. Park, M. Pablos, G. Foti, C. P. Gommenginger, P.-W. Liu, et al. "Sensitivity of GNSS-R spaceborne observations to soil moisture and vegetation," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 9, 4730-4742, 2016.
doi:10.1109/JSTARS.2016.2588467

14. Kim, H. and V. Lakshmi, "Use of Cyclone Global Navigation Satellite System (CYGNSS) observations for estimation of soil moisture," Geophysical Research Letters, Vol. 45, 8272-8282, 2018.
doi:10.1029/2018GL078923

15. Carreno-Luengo, H., G. Luzi, and M. Crosetto, "Sensitivity of CyGNSS bistatic reflectivity and SMAP microwave radiometry brightness temperature to geophysical parameters over land surfaces," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 1-16, 2018.

16. Chew, C., J. T. Reager, and E. Small, "CYGNSS data map flood inundation during the 2017 Atlantic hurricane season," Scientific Reports (Nature Publisher Group), Vol. 8, 1-8, 2018.

17. Chew, C., A. Colliander, R. Shah, C. Zuffada, and M. Burgin, "The sensitivity of ground-reflected GNSS signals to near-surface soil moisture, as recorded by spaceborne receivers," 2017 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2017, 2661-2663, 2017.
doi:10.1109/IGARSS.2017.8127544

18. Al-Khaldi, M., J. Johnson, A. O'Brien, F. Mattia, and A. Balenzano, "GNSS-R time-series soil moisture retrievals from vegetated surfaces," 2018 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2018, 2035-2038, 2018.
doi:10.1109/IGARSS.2018.8518620

19. Tsang, L. and J. Kong, Scattering of Electromagnetic Waves, Vol. 3: Advanced Topics, 413, Wiley Interscience, 2001.
doi:10.1002/0471224278

20. Beckmann, P. and A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Surfaces, 511, Artech House, Inc., Norwood, MA, 1987.

21. Tsang, L., J. Kong, and K. Ding, Scattering of Electromagnetic Waves, Vol. 1: Theory and Applications, Wieley Interscience, New York, 2000.
doi:10.1002/0471224286

22. Huang, S., L. Tsang, E. G. Njoku, and K. S. Chan, "Backscattering coefficients, coherent reflectivities, and emissivities of randomly rough soil surfaces at L-band for SMAP applications based on numerical solutions of Maxwell equations in three-dimensional simulations," IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, 2557-2568, 2010.
doi:10.1109/TGRS.2010.2040748

23. Huang, S. and L. Tsang, "Electromagnetic scattering of randomly rough soil surfaces based on numerical solutions of Maxwell equations in three-dimensional simulations using a hybrid UV/PBTG/SMCG method," IEEE Transactions on Geoscience and Remote Sensing, Vol. 50, 4025-4035, 2012.
doi:10.1109/TGRS.2012.2189776

24. Liao, T.-H., L. Tsang, S. Huang, N. Niamsuwan, S. Jaruwatanadilok, S.-B. Kim, et al. "Copolarized and cross-polarized backscattering from random rough soil surfaces from L-band to Ku-band using numerical solutions of Maxwell's equations with near-field precondition," IEEE Transactions on Geoscience and Remote Sensing, Vol. 54, 651-662, 2016.
doi:10.1109/TGRS.2015.2451671

25. Ishimaru, A., "Wave Propagation and Scattering in Random Meida," Academic Press, Vol. 1 and 2, 1978.

26. Tsang, L., J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing, John Wiley&Sons, New York, 1985.

27. Fung, A. K., Microwave Scattering and Emission Models and Their Applications, Artech House, Boston, 1994.

28. Chen, K.-S., L. Tsang, K.-L. Chen, T. H. Liao, and J.-S. Lee, "Polarimetric simulations of SAR at L-band over bare soil using scattering matrices of random rough surfaces from numerical three-dimensional solutions of Maxwell equations," IEEE Transactions on Geoscience and Remote Sensing, Vol. 52, 7048-7058, 2014.
doi:10.1109/TGRS.2014.2306922

29. Kim, S.-B., J. J. Van Zyl, J. T. Johnson, M. Moghaddam, L. Tsang, A. Colliander, et al. "Surface soil moisture retrieval using the L-band synthetic aperture radar onboard the soil moisture active- passive satellite and evaluation at core validation sites," IEEE Transactions on Geoscience and Remote Sensing, Vol. 55, 1897-1914, 2017.
doi:10.1109/TGRS.2016.2631126