Vol. 162

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

A Nanostructure-Based High-Temperature Selective Absorber-Emitter Pair for a Solar Thermophotovoltaic System with Narrowband Thermal Emission

By Zhipeng Hu, Yuan Zhang, Liu Liu, Liu Yang, and Sailing He
Progress In Electromagnetics Research, Vol. 162, 95-108, 2018


Using absorber-emitter modules, solar thermophotovoltaic (STPV) systems could potentially break through the Shockley-Queisser limit. Efficient spectral selectivity and high temperature endurance are the keys to this technology. In this paper, a high-efficiency selective absorber-emitter module based on refractory material nanostructures is designed for solar thermophotovoltaic applications. Our numerical simulations show that the proposed absorber-emitter module could provide a specified narrowband emission spectrum above the bandgap with optimal bandwidth, and its performance is robust and independent of incident angle and polarization. According to detailed balance calculations, over a broad range of module temperatures, the solar cell efficiency of our design could suprass the Shockley-Queisser limit by 41%.


Zhipeng Hu, Yuan Zhang, Liu Liu, Liu Yang, and Sailing He, "A Nanostructure-Based High-Temperature Selective Absorber-Emitter Pair for a Solar Thermophotovoltaic System with Narrowband Thermal Emission," Progress In Electromagnetics Research, Vol. 162, 95-108, 2018.


    1. Shockley, W. and H. J. Queisser, "Detailed balance limit of efficiency of pn junction solar cells," Journal of Applied Physics, Vol. 32, No. 3, 510-519, 1961.

    2. De Vos, A. and H. Pauwels, "On the thermodynamic limit of photovoltaic energy conversion," Applied Physics, Vol. 25, No. 2, 119-125, 1981.

    3. Wiemer, M., V. Sabnis, and H. Yuen, "43.5% efficient lattice matched solar cells," Proc. SPIE, Vol. 8108, No. 810804, 2011.

    4. Swanson, R. M., "A proposed thermophotovoltaic solar energy conversion system," Proc. IEEE, Vol. 67, No. 3, 446-447, 1979.

    5. Ruppel, W. and P. Wurfel, "Upper limit for the conversion of solar energy," IEEE Trans. Electron. Dev., Vol. 27, No. 4, 877-882, 1980.

    6. Spirkl, W. and H. Ries, "Solar thermophotovoltaics: An assessment," J. Appl. Phys., Vol. 57, No. 9, 4409-4414, 1985.

    7. Landsberg, P. T. and P. Baruch, "The thermodynamics of the conversion of radiation energy for photovoltaics," J. Phys. Math. Gen., Vol. 22, No. 11, 1911-1926, 1989.

    8. Chaudhuri, T. K., "A solar thermophotovoltaic converter using Pbs photovoltaic cells," Int. J. Energy Res., Vol. 16, No. 6, 481-487, 1992.

    9. Stone, K. W., N. S. Fatemi, and L. M. Garverick, "Operation and component testing of a solar thermophotovoltaic power system," Photovoltaic Specialists Conference, 1996, IEEE Conference Record of the Twenty Fifth, 1421-1424, 1996.

    10. Badescu, V., "Thermodynamic theory of thermophotovoltaic solar energy conversion," J. Appl. Phys., Vol. 90, No. 12, 6476-6486, 2001.

    11. Tobias, I. and A. Luque, "Ideal efficiency and potential of solar thermophotonic converters under optically and thermally concentrated power flux," IEEE Trans. Electron. Dev., Vol. 49, No. 11, 2024-2030, 2002.

    12. Harder, N. P. and P. Wurfel, "Theoretical limits of thermophotovoltaic solar energy conversion," Semicond. Sci. Technol., Vol. 18, No. 5, S151-S157, 2003.

    13. Badescu, V., "Upper bounds for solar thermophotovoltaic efficiency," Renew. Energy, Vol. 30, No. 2, 211-225, 2005.

    14. Andreev, V. M., V. P. Khvostikov, O. A. Khvostikova, A. S. Vlasov, P. Y. Gazaryan, N. A. Sadchikov, and V. D. Rumyantsev, "Solar thermophotovoltaic system with high temperature tungsten emitter," Photovoltaic Specialists Conference, 2005, IEEE Conference Record of the Thirty-first,, 671-674, 2005.

    15. Vlasov, A. S., V. P. Khvostikov, O. A. Khvostikova, P. Y. Gazaryan, S. V. Sorokina, and V. M. Andreev, "TPV systems with solar powered tungsten emitters," AIP Conf. Proc., Vol. 890, 327-334, 2007.

    16. Rephaeli, E. and S. Fan, "Tungsten black absorber for solar light with wide angular operation range," Applied Physics Letters, Vol. 92, No. 21, 211107, 2008.

    17. Rinnerbauer, V., Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, "High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals," Optics Express, Vol. 21, No. 9, 11482, 2013.

    18. Celanovic, I., N. Jovanovic, and J. Kassakian, "Two-dimensional tungsten photonic crystals as selective thermal emitters," Applied Physics Letters, Vol. 92, No. 19, 193101, 2008.

    19. Yeng, Y. X., M. Ghebrebrhan, P. Bermel, and W. R. Chan, "Enabling high-temperature nanophotonics for energy applications," Proceedings of the National Academy of Sciences, Vol. 109, No. 7, 2280-2285, 2012.

    20. Nam, Y., Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljacic, and E. N. Wang, "Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters," Solar Energy Materials and Solar Cells, Vol. 122, 287-296, 2014.

    21. Rephaeli, E. and S. Fan, "Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit," Optics Express, Vol. 17, No. 17, 15145-15149, 2009.

    22. Sergeant, N. P., M. Agrawal, and P. Peumans, "High performance solar-selective absorbers using coated sub-wavelength gratings," Optics Express, Vol. 18, No. 6, 5525-5540, 2010.

    23. Lenert, A., D. M. Bierman, Y. Nam, W. R. Chan, I. Celanovi´c, M. Soljacic, and E. N. Wang, "A nanophotonic solar thermophotovoltaic device," Nature Nanotechnology, Vol. 9, No. 2, 126-130, 2014.

    24. Chou, J. B., Y. X. Yeng, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljacic, E. N. Wang, and S. G. Kim, "Design of wide-angle selective absorbers/emitters with dielectric filled metallic photonic crystals for energy applications," Optics Express, Vol. 22, No. 101, A144-A154, 2014.

    25. Mo, L., L. Yang, E. H. Lee, and S. He, "High-efficiency plasmonic metamaterial selective emitter based on an optimized spherical core-shell nanostructure for planar solar thermophotovoltaics," Plasmonics, Vol. 10, No. 3, 529-538, 2015.

    26. Shackelford, J. F., Y. H. Han, S. Kim, and S. H. Kwon, CRC Materials Science and Engineering Handbook, CRC Press, Florida, 2015.

    27. Touloukian, Y. S. and D. P. DeWitt, Thermophysical Properties of Matter, The TPRC Data Series, IFI/Plenum, New York-Washington, 1970.

    28. Roberts, S., "Optical properties of nickel and tungsten and their interpretation according to Drude’s formula," Physical Review, Vol. 114, No. 1, 104, 1959.