Vol. 159

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

An X/Ku-Band Focusing Anisotropic Metasurface for Low Cross-Polarization Lens Antenna Application

By Hai-Peng Li, Guang-Ming Wang, Xiang-Jun Gao, Jian-Gang Liang, and Hai-Sheng Hou
Progress In Electromagnetics Research, Vol. 159, 79-91, 2017


An X/Ku-band flat lens antenna based on dual-frequency anisotropic metasurface is proposed in this paper. The function of the anisotropic metasurface is to focus the incident plane waves around 10 GHz and 14 GHz on different spots. Then we place a Vivaldi antenna with its phase centers at 10 GHz and 14 GHz well matching the focal spot of the metasurface at each frequency to build a flat lens antenna. The lens antenna has a peak gain of 18.5 dB and cross-polarization levels of lower than -20 dB at 10 GHz with -1 dB gain bandwidth of 9.8-10.4 GHz, while it has a peak gain of 18.8 dB and cross-polarization levels of lower than -30 dB at 14 GHz with the bandwidth of 13.8-14.2 GHz. Besides single working band, the antenna can simultaneously operate at 10 GHz and 14 GHz with gains of 16.2 dB and 16.5 dB, respectively. Measured results have a good agreement with the simulated ones.


Hai-Peng Li, Guang-Ming Wang, Xiang-Jun Gao, Jian-Gang Liang, and Hai-Sheng Hou, "An X/Ku-Band Focusing Anisotropic Metasurface for Low Cross-Polarization Lens Antenna Application," Progress In Electromagnetics Research, Vol. 159, 79-91, 2017.


    1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics Uspekhi, Vol. 10, No. 4, 509-514, 1968.

    2. Pendry, J. B., et al., "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microw. Theory, Vol. 47, No. 11, 2075-2084, 1999.

    3. Smith, D. R., et al., "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, No. 18, 4184-4187, 2000.

    4. Liu, J. P., Y. Z. Cheng, Y. Nie, and R. Z. Gong, "Metamaterial extends microstrip antenna," Microwaves & RF, Vol. 52, No. 12, 69-73, 2013.

    5. Yu, N. F., P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, "Light propagation with phase discontinuities: Generalized laws of reflection and refraction," Science, Vol. 334, 333-337, 2011.

    6. Pors, A., M. G. Nielsen, R. L. Eriksen, and S. I. Bozhevolnyi, "Broadband focusing flat mirrors based on plasmonic gradient metasurfaces," Nano Lett., Vol. 13, 829-834, 2013.

    7. Xu, H. X., et al., "Multifunctional microstrip array combining a linear polarizer and focusing metasurface," IEEE Trans. Antennas Propag., Vol. 64, No. 8, 3676-3282, 2016.

    8. Li, X., S. Y. Xiao, B. G. Cai, Q. He, T. J. Cui, and L. Zhou, "Flat metasurfaces to focus electromagnetic waves in reflection geometry," Opt. Lett., Vol. 37, 4940-4942, 2012.

    9. Aieta, F., P. Genevet, M. A. Kats, N. F. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, "Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces," Nano Lett., Vol. 12, 4932-4936, 2012.

    10. Li, H.-P., G. M. Wang, J. G. Liang, X. J. Gao, H. S. Hou, and X. Y. Jia, "Single-layer focusing gradient metasurface for ultrathin planar lens antenna application," IEEE Trans. Antennas Propag., Vol. 65, No. 3, 1452-1457, 2017.

    11. Ni, X., N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, "Broadband light bending with plasmonic nanoantennas," Science, Vol. 335, 427, 2012.

    12. Zhang, K., X. M. Ding, L. Zhang, and Q. Wu, "Anomalous three-dimensional refraction in the microwave region by ultra-thin high efficiency metalens with phase discontinuities in the orthogonal directions," New J. Phys., Vol. 16, 103020, 2014.

    13. Sun, S. L., et al., "High-efficiency broadband anomalous reflection by gradient meta-surfaces," Nano Lett., Vol. 12, 6223-6229, 2012.

    14. Pfeiffer, C., et al., "Efficient light bending with isotropic metamaterial huygens’ surfaces," Nano Lett., Vol. 14, No. 5, 2491-2497, 2014.

    15. Monticone, F., N. M. Estakhri, and A. Alu, "Full control of nanoscale optical transmission with a composite metascreen," Phys. Rev. Lett., Vol. 110, 203903, 2013.

    16. Wu, C. J., Y. Z. Cheng, W. Y. Wang, B. He, and R. Z. Gong, "Ultra-thin and polarizationindependent phase gradient metasurface for high-efficiency spoof surface-plasmon-polariton coupling," Appl. Phys. Express, Vol. 8, No. 12, 122001, 2015.

    17. Cai, T., et al., "Ultra-thin polarization beam splitter using 2-D transmissive phase gradient metasurface," IEEE Trans. Antennas Propag., Vol. 63, No. 12, 5629-5636, 2015.

    18. Li, H. P., G. M. Wang, J. G. Wang, and X. J. Gao, "Wideband multifunctional metasurface for polarization conversion and gain enhancement," Progress In Electromagnetic Research, Vol. 155, 115-125, 2016.

    19. Song, K., Y. H. Liu, C. R. Luo, and X. P. Zhao, "High-efficiency broadband and multiband crosspolarization conversion using chiral metamaterial," J. Phys. D: Appl. Phys., Vol. 47, 505104, 2014.

    20. Yang, Y. M., W. Y. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, "Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation," Nano Lett., Vol. 14, 1394-1399, 2014.

    21. Zhu, L., F.-Y. Meng, L. Dong, J.-H. Fu, F. Zhang, and Q. Wu, "Polarization manipulation based on electromagnetically induced transparency-like (EIT-like) effect," Opt. Express, Vol. 21, No. 26, 32100-32110, 2013.

    22. Chen, H. Y., J. F. Wang, H. Ma, S. B. Qu, Z. Xu, A. X. Zhang, M. B. Yan, and Y. F. Li, "Ultrawideband polarization conversion metasurfaces based on multiple plasmon resonances," J. Appl. Phys., Vol. 115, 154504, 2014.

    23. Ma, H. F., G. Z. Wang, G. S. Kong, and T. J. Cui, "Broadband circular and linear polarization conversions realized by thin birefringent reflective metasurfaces," Opt. Mater. Express, Vol. 4, No. 8, 1718-1724, 2014.

    24. Pfeiffer, C. and A. Grbic, "Bianisotropic metasurfaces for optimal polarization control: Analysis and synthesis," Phys. Rev. Applied, Vol. 2, No. 4, 044011, 2014.

    25. Chen, J., Q. Cheng, J. Zhao, D. S. Dong, and T. J. Cui, "Reduction of radar cross section based on a metasurface," Progress In Electromagnetics Research, Vol. 149, 205-216, 2014.

    26. Zhang, K., X. M. Ding, D. L. Wo, F. R. Meng, and Q. Wu, "Experimental validation of ultrathin metalenses for N-beam emissions based on transformation optics," Appl. Phys. Lett., Vol. 108, 053508, 2016.

    27. Abdelrahman, A. H., A. Z. Elsherbeni, and F. Yang, "Transmitarray antenna design using cross-slot elements with no dielectric substrate," IEEE Antennas Wireless Propag. Lett., Vol. 13, 177-200, 2014.

    28. Rahmati, B. and H. R. Hassani, "Low-profile slot transmitarray antenna," IEEE Trans. Antennas Propag., Vol. 63, No. 1, 174-181, 2015.