Vol. 159

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2017-07-13

An X/Ku-Band Focusing Anisotropic Metasurface for Low Cross-Polarization Lens Antenna Application

By Hai-Peng Li, Guang-Ming Wang, Xiang-Jun Gao, Jian-Gang Liang, and Hai-Sheng Hou
Progress In Electromagnetics Research, Vol. 159, 79-91, 2017
doi:10.2528/PIER17032807

Abstract

An X/Ku-band flat lens antenna based on dual-frequency anisotropic metasurface is proposed in this paper. The function of the anisotropic metasurface is to focus the incident plane waves around 10 GHz and 14 GHz on different spots. Then we place a Vivaldi antenna with its phase centers at 10 GHz and 14 GHz well matching the focal spot of the metasurface at each frequency to build a flat lens antenna. The lens antenna has a peak gain of 18.5 dB and cross-polarization levels of lower than -20 dB at 10 GHz with -1 dB gain bandwidth of 9.8-10.4 GHz, while it has a peak gain of 18.8 dB and cross-polarization levels of lower than -30 dB at 14 GHz with the bandwidth of 13.8-14.2 GHz. Besides single working band, the antenna can simultaneously operate at 10 GHz and 14 GHz with gains of 16.2 dB and 16.5 dB, respectively. Measured results have a good agreement with the simulated ones.

Citation


Hai-Peng Li, Guang-Ming Wang, Xiang-Jun Gao, Jian-Gang Liang, and Hai-Sheng Hou, "An X/Ku-Band Focusing Anisotropic Metasurface for Low Cross-Polarization Lens Antenna Application," Progress In Electromagnetics Research, Vol. 159, 79-91, 2017.
doi:10.2528/PIER17032807
http://jpier.org/PIER/pier.php?paper=17032807

References


    1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics Uspekhi, Vol. 10, No. 4, 509-514, 1968.
    doi:10.1070/PU1968v010n04ABEH003699

    2. Pendry, J. B., et al., "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microw. Theory, Vol. 47, No. 11, 2075-2084, 1999.
    doi:10.1109/22.798002

    3. Smith, D. R., et al., "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, No. 18, 4184-4187, 2000.
    doi:10.1103/PhysRevLett.84.4184

    4. Liu, J. P., Y. Z. Cheng, Y. Nie, and R. Z. Gong, "Metamaterial extends microstrip antenna," Microwaves & RF, Vol. 52, No. 12, 69-73, 2013.

    5. Yu, N. F., P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, "Light propagation with phase discontinuities: Generalized laws of reflection and refraction," Science, Vol. 334, 333-337, 2011.
    doi:10.1126/science.1210713

    6. Pors, A., M. G. Nielsen, R. L. Eriksen, and S. I. Bozhevolnyi, "Broadband focusing flat mirrors based on plasmonic gradient metasurfaces," Nano Lett., Vol. 13, 829-834, 2013.
    doi:10.1021/nl304761m

    7. Xu, H. X., et al., "Multifunctional microstrip array combining a linear polarizer and focusing metasurface," IEEE Trans. Antennas Propag., Vol. 64, No. 8, 3676-3282, 2016.
    doi:10.1109/TAP.2016.2565742

    8. Li, X., S. Y. Xiao, B. G. Cai, Q. He, T. J. Cui, and L. Zhou, "Flat metasurfaces to focus electromagnetic waves in reflection geometry," Opt. Lett., Vol. 37, 4940-4942, 2012.
    doi:10.1364/OL.37.004940

    9. Aieta, F., P. Genevet, M. A. Kats, N. F. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, "Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces," Nano Lett., Vol. 12, 4932-4936, 2012.
    doi:10.1021/nl302516v

    10. Li, H.-P., G. M. Wang, J. G. Liang, X. J. Gao, H. S. Hou, and X. Y. Jia, "Single-layer focusing gradient metasurface for ultrathin planar lens antenna application," IEEE Trans. Antennas Propag., Vol. 65, No. 3, 1452-1457, 2017.
    doi:10.1109/TAP.2016.2642832

    11. Ni, X., N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, "Broadband light bending with plasmonic nanoantennas," Science, Vol. 335, 427, 2012.
    doi:10.1126/science.1214686

    12. Zhang, K., X. M. Ding, L. Zhang, and Q. Wu, "Anomalous three-dimensional refraction in the microwave region by ultra-thin high efficiency metalens with phase discontinuities in the orthogonal directions," New J. Phys., Vol. 16, 103020, 2014.
    doi:10.1088/1367-2630/16/10/103020

    13. Sun, S. L., et al., "High-efficiency broadband anomalous reflection by gradient meta-surfaces," Nano Lett., Vol. 12, 6223-6229, 2012.
    doi:10.1021/nl3032668

    14. Pfeiffer, C., et al., "Efficient light bending with isotropic metamaterial huygens’ surfaces," Nano Lett., Vol. 14, No. 5, 2491-2497, 2014.
    doi:10.1021/nl5001746

    15. Monticone, F., N. M. Estakhri, and A. Alu, "Full control of nanoscale optical transmission with a composite metascreen," Phys. Rev. Lett., Vol. 110, 203903, 2013.
    doi:10.1103/PhysRevLett.110.203903

    16. Wu, C. J., Y. Z. Cheng, W. Y. Wang, B. He, and R. Z. Gong, "Ultra-thin and polarizationindependent phase gradient metasurface for high-efficiency spoof surface-plasmon-polariton coupling," Appl. Phys. Express, Vol. 8, No. 12, 122001, 2015.
    doi:10.7567/APEX.8.122001

    17. Cai, T., et al., "Ultra-thin polarization beam splitter using 2-D transmissive phase gradient metasurface," IEEE Trans. Antennas Propag., Vol. 63, No. 12, 5629-5636, 2015.
    doi:10.1109/TAP.2015.2496115

    18. Li, H. P., G. M. Wang, J. G. Wang, and X. J. Gao, "Wideband multifunctional metasurface for polarization conversion and gain enhancement," Progress In Electromagnetic Research, Vol. 155, 115-125, 2016.
    doi:10.2528/PIER16012011

    19. Song, K., Y. H. Liu, C. R. Luo, and X. P. Zhao, "High-efficiency broadband and multiband crosspolarization conversion using chiral metamaterial," J. Phys. D: Appl. Phys., Vol. 47, 505104, 2014.
    doi:10.1088/0022-3727/47/50/505104

    20. Yang, Y. M., W. Y. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, "Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation," Nano Lett., Vol. 14, 1394-1399, 2014.
    doi:10.1021/nl4044482

    21. Zhu, L., F.-Y. Meng, L. Dong, J.-H. Fu, F. Zhang, and Q. Wu, "Polarization manipulation based on electromagnetically induced transparency-like (EIT-like) effect," Opt. Express, Vol. 21, No. 26, 32100-32110, 2013.
    doi:10.1364/OE.21.032099

    22. Chen, H. Y., J. F. Wang, H. Ma, S. B. Qu, Z. Xu, A. X. Zhang, M. B. Yan, and Y. F. Li, "Ultrawideband polarization conversion metasurfaces based on multiple plasmon resonances," J. Appl. Phys., Vol. 115, 154504, 2014.
    doi:10.1063/1.4869917

    23. Ma, H. F., G. Z. Wang, G. S. Kong, and T. J. Cui, "Broadband circular and linear polarization conversions realized by thin birefringent reflective metasurfaces," Opt. Mater. Express, Vol. 4, No. 8, 1718-1724, 2014.
    doi:10.1364/OME.4.001717

    24. Pfeiffer, C. and A. Grbic, "Bianisotropic metasurfaces for optimal polarization control: Analysis and synthesis," Phys. Rev. Applied, Vol. 2, No. 4, 044011, 2014.
    doi:10.1103/PhysRevApplied.2.044011

    25. Chen, J., Q. Cheng, J. Zhao, D. S. Dong, and T. J. Cui, "Reduction of radar cross section based on a metasurface," Progress In Electromagnetics Research, Vol. 149, 205-216, 2014.

    26. Zhang, K., X. M. Ding, D. L. Wo, F. R. Meng, and Q. Wu, "Experimental validation of ultrathin metalenses for N-beam emissions based on transformation optics," Appl. Phys. Lett., Vol. 108, 053508, 2016.
    doi:10.1063/1.4941545

    27. Abdelrahman, A. H., A. Z. Elsherbeni, and F. Yang, "Transmitarray antenna design using cross-slot elements with no dielectric substrate," IEEE Antennas Wireless Propag. Lett., Vol. 13, 177-200, 2014.
    doi:10.1109/LAWP.2014.2298851

    28. Rahmati, B. and H. R. Hassani, "Low-profile slot transmitarray antenna," IEEE Trans. Antennas Propag., Vol. 63, No. 1, 174-181, 2015.
    doi:10.1109/TAP.2014.2368576