Vol. 158

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2017-04-19

An Efficient Numerical Contour Deformation Method for Calculating Electromagnetic Scattered Fields from 3-D Convex Scatterers

By Yu Mao Wu, Weng Cho Chew, Ya-Qiu Jin, Tie-Jun Cui, and Li Jun Jiang
Progress In Electromagnetics Research, Vol. 158, 109-119, 2017
doi:10.2528/PIER16112801

Abstract

We consider the accuracy improvement of the high frequency scattered fields from 3-D convex scatterers. The Fock currents from the convex scatterers are carefully studied. Furthermore, we propose the numerical contour deformation method to calculate the Fock currents with frequency independent workload and error controllable accuracy. Then, by adopting the Fock currents and the incremental length diffraction coefficient (ILDC) technique, the scattered fields are clearly formulated. Compared to physical optics (PO) scattered fields from 3-D convex sphere, numerical results demonstrate significant accuracy enhancement of the scattered field via the Fock current approach.

Citation


Yu Mao Wu, Weng Cho Chew, Ya-Qiu Jin, Tie-Jun Cui, and Li Jun Jiang, "An Efficient Numerical Contour Deformation Method for Calculating Electromagnetic Scattered Fields from 3-D Convex Scatterers," Progress In Electromagnetics Research, Vol. 158, 109-119, 2017.
doi:10.2528/PIER16112801
http://jpier.org/PIER/pier.php?paper=16112801

References


    1. Song, J. M., C. C. Lu, and W. C. Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects," IEEE Trans. Antennas Propag., Vol. 45, No. 10, 1488-1493, Oct. 1997.
    doi:10.1109/8.633855

    2. Ling, H., R. C. Chou, and S. W. Lee, "Shooting and bouncing rays: Calculating the RCS of an arbitrarily shaped cavity," IEEE Trans. Antennas Propag., Vol. 37, No. 2, 194-205, 1989.
    doi:10.1109/8.18706

    3. Tiberio, R., A. Toccafondi, A. Polemi, and S. Maci, "Incremental theory of diffraction: A newimproved formulation," IEEE Trans. Antennas Propag., Vol. 52, No. 9, 2234-2243, Mar. 2004.
    doi:10.1109/TAP.2004.834142

    4. Rubinowicz, A., "Darstellung der sommerfeldschen beugungswelle in einer gestalt, die Beitrage der einzelnen elemente der beugende kante zur gesamten beugungswelle erkennen last," Acta Phisica Polonica A, Vol. 28, No. 6, 841-860, 1965.

    5. Canta, S., D. Erricolo, and A. Toccafondi, "Incremental fringe formulation for a complex source point beam expansion," IEEE Trans. Antennas Propag., Vol. 59, No. 5, 1553-1561, May 2011.
    doi:10.1109/TAP.2011.2122291

    6. Mitzner, K. M., "Incremental length diffraction coefficients,", Northrop Corp, Aircraft Div., Tech Rep. AFAL-TR-73-296, 1974.

    7. Hansen, T. B. and R. A. Shore, "“Incremental lenght diffraction coefficient for the shadow boundary of a general cylinder,", Rome Laboratory, Air Force Material Command, Tech. Rep. RL-TR-97-151, 1997.

    8. Breinbjerg, O., "Higher order equivalent edge currents for fringe wave radar scattering by perfectly conducting polygonal plates," IEEE Trans. Antennas Propag., Vol. 40, No. 12, 1543-1554, Dec. 1992.
    doi:10.1109/8.204745

    9. Fock, V. A., "The distributions of currents induced by a plane wave on the surface of a conductor," J. Phys., Vol. 10, 130-136, 1946.

    10. Shore, R. A. and A. D. Yaghjian, "Incremental diffraction coefficients for planar surfaces," IEEE Trans. Antennas Propag., Vol. 36, No. 1, 55-70, Jan. 1988.
    doi:10.1109/8.1075

    11. Michaeli, A., "Elimination of infinities in equivalent edge currents, Part I: Fringe current components," IEEE Trans. Antennas Propag., Vol. 34, 912-918, Jul. 1986.

    12. Michaeli, A., "Elimination of infinities in equivalent edge currents, Part II: Physical optics components," IEEE Trans. Antennas Propag., Vol. 34, No. 8, 1986.
    doi:10.1109/TAP.1986.1143913

    13. Hansen, T. B. and R. A. Shore, "Incremental length diffraction coefficients for the shadow boundary of a convex cylinder," IEEE Trans. Antennas Propag., Vol. 46, No. 10, 1458-1466, Oct. 1998.
    doi:10.1109/8.725277

    14. Yaghjian, A. D., R. A. Shore, and M. B. Woodworth, "Shadow boundary incremental length diffraction coefficients for perfectly conducting smooth, convex surfaces," Radio Sci., Vol. 31, No. 6, 1681-1695, Dec. 1996.
    doi:10.1029/96RS02276

    15. Sandstrom, S. K., "A remark on the computation of Fock functions for negative arguments," Int. J. Electron. Commun. (AEU), Vol. 62, No. 4, 324-326, Apr. 2008.
    doi:10.1016/j.aeue.2007.08.001

    16. Wu, T. T., "High-frequency scattering," Phys. Rev., Vol. 104, No. 5, 1201-1212, 1956.
    doi:10.1103/PhysRev.104.1201

    17. Honl, H., A. W. Maue, and K. Westpfahl, Theory of Diffraction, Springer, Berlin, 1961.

    18. Wu, Y. M., L. J. Jiang, and W. C. Chew, "An efficient method for computing highly oscillatory physical optics integral," Progress In Electromagnetics Research, Vol. 127, 211-257, 2012.
    doi:10.2528/PIER12022308

    19. Wu, Y. M., L. J. Jiang, W. E. I. Sha, and W. C. Chew, "The numerical steepest descent path method for calculating physical optics integrals on smooth conducting surfaces," IEEE Trans. Antennas Propag., Vol. 61, No. 8, 4183-4193, Aug. 2013.
    doi:10.1109/TAP.2013.2259788

    20. Wu, Y. M., L. J. Jiang, W. C. Chew, and Y. Q. Jin, "The contour deformation method for calculating the high ffrequency scattered field by the Fock current on the surface of the 3-D convex cylinder," IEEE Trans. Antennas Propag., Vol. 63, No. 5, 2180-2190, May 2015.
    doi:10.1109/TAP.2015.2407411

    21. Shore, R. A. and A. D. Yaghjian, "Shadow boundary incremental length diffraction coefficients applied to scattering from 3D bodies," IEEE Trans. Antennas Propag., Vol. 49, No. 2, 200-210, Feb. 2001.
    doi:10.1109/8.914277

    22. Wu, Y. M. and W. C. Chew, "The modern high frequency techniques for solving electromagnetic scattering problems," Progress In Electromagnetics Research, Vol. 156, 63-82, 2016.
    doi:10.2528/PIER15110208

    23. Wu, Y. M. and S. J. Teng, "Frequency-independent approach to calculate physical optics radiations with the quadratic concave phase variations," J. Comput. Phys., Vol. 324, 44-61, 2016.
    doi:10.1016/j.jcp.2016.07.029