Vol. 157

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2016-10-19

Bandwidth Tuning in Transistor Embedded Metamaterials Using Variable Resistance

By John P. Barrett, Alexander R. Katko, and Steven A. Cummer
Progress In Electromagnetics Research, Vol. 157, 49-61, 2016
doi:10.2528/PIER16072005

Abstract

Metamaterials have been previously loaded with diodes and other types of passive circuit elements. Transistors offer an alternative to these established loading elements to expand the possible capabilities of metamaterials. With embedded transistors, additional degrees of freedom are achieved and lay out the architecture for more complex electromagnetic metamaterial design. A mathematical analysis of transistor loaded SRR unit cells is described in which the transistor acts as a variable resistor. From the mathematical analysis, we calculate transmission coefficients for a single unit cell. We then experimentally measure two SRRs with tunable quality factors and thus tunable bandwidth based upon modulating the effective loading circuit resistance to confirm the calculations. From the agreement between the calculated and measured transmission coefficients, we expand the analysis to show that a slab of more densely packed unit cells can achieve negative permeability with varying degrees of dispersion.

Citation


John P. Barrett, Alexander R. Katko, and Steven A. Cummer, "Bandwidth Tuning in Transistor Embedded Metamaterials Using Variable Resistance," Progress In Electromagnetics Research, Vol. 157, 49-61, 2016.
doi:10.2528/PIER16072005
http://jpier.org/PIER/pier.php?paper=16072005

References


    1. Pendry, J., A. Holden, D. Robbins, and W. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2075-2084, 1999.
    doi:10.1109/22.798002

    2. Marques, R., F. Medina, and R. Rafii-El-Idrissi, "Role of bianisotropy in negative permeability and left-handed metamaterials," Physical Review B, Vol. 65, 144440, 2002.
    doi:10.1103/PhysRevB.65.144440

    3. Schurig, D., J. Mock, and D. Smith, "Electric-field-coupled resonators for negative permittivity metamaterials," Applied Physics Letters, Vol. 88, No. 4, 041109, 2006.
    doi:10.1063/1.2166681

    4. Smith, D., J. Pendry, and M. Wiltshire, "Metamaterials and negative refractive index," Science, Vol. 305, No. 5685, 788-792, 2004.
    doi:10.1126/science.1096796

    5. Padilla, W., D. Basov, and D. Smith, "Negative refractive index metamaterials," Materials Today, Vol. 9, No. 78, 28-35, 2006.
    doi:10.1016/S1369-7021(06)71573-5

    6. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, No. 5801, 977-980, 2006.
    doi:10.1126/science.1133628

    7. Pendry, J., "Negative refraction makes a perfect lens," Physical Review Letters, Vol. 85, 3966-3969, 2000.
    doi:10.1103/PhysRevLett.85.3966

    8. Freire, M., R. Marques, and L. Jelinek, "Experimental demonstration of a = 1 metamaterial lens for magnetic resonance imaging," Applied Physics Letters, Vol. 93, No. 23, 231108, 2008.
    doi:10.1063/1.3043725

    9. Greegor, R., C. Parazzoli, J. A. Nielsen, M. H. Tanielian, D. Vier, S. Schultz, C. Holloway, and R. Ziolkowski, "Demonstration of impedance matching using a mu-negative (mng) metamaterial," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 92-95, 2009.
    doi:10.1109/LAWP.2008.2011570

    10. Erentok, A. and R. Ziolkowski, "Metamaterial-inspired efficient electrically small antennas," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 3, 691-707, 2008.
    doi:10.1109/TAP.2008.916949

    11. Ziolkowski, R., P. Jin, and C.-C. Lin, "Metamaterial-inspired engineering of antennas," Proceedings of the IEEE, Vol. 99, No. 10, 1720-1731, 2011.
    doi:10.1109/JPROC.2010.2091610

    12. Gil, I., J. Garcia-Garcia, J. Bonache, F. Martin, M. Sorolla, and R. Marques, "Varactor-loaded split ring resonators for tunable notch filters at microwave frequencies," Electronic Letters, Vol. 40, No. 21, 1347-1348, 2004.
    doi:10.1049/el:20046389

    13. Reynet, O. and O. Acher, "Voltage controlled metamaterial," Applied Physics Letters, Vol. 84, No. 7, 1198-1200, 2004.
    doi:10.1063/1.1646731

    14. Hand, T. and S. Cummer, "Characterization of tunable metamaterial elements using mems switches," IEEE Antennas and Wireless Propagation Letters, Vol. 6, 401-404, 2007.
    doi:10.1109/LAWP.2007.902807

    15. Zou, D., A. Jiang, and R.-X. Wu, "Ferromagnetic metamaterial with tunable negative index of refraction," Journal of Applied Physics, Vol. 107, No. 1, 013507, 2010.
    doi:10.1063/1.3275857

    16. Hand, T. and S. Cummer, "Frequency tunable electromagnetic metamaterial using ferroelectric loaded split rings," Journal of Applied Physics, Vol. 103, No. 6, 066105, 2008.
    doi:10.1063/1.2898575

    17. Cummer, S., B.-I. Popa, and T. Hand, "Q-based design equations and loss limits for resonant metamaterials and experimental validation," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 1, 127-132, 2008.
    doi:10.1109/TAP.2007.912959

    18. Kodera, T., D. Sounas, and C. Caloz, "Artificial faraday rotation using a ring metamaterial structure without static magnetic field," Applied Physics Letters, Vol. 99, No. 3, 2011.
    doi:10.1063/1.3615688

    19. Jelinek, L. and J. Machac, "An fet-based unit cell for an active magnetic metamaterial," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 927-930, 2011.
    doi:10.1109/LAWP.2011.2167311

    20. Xu, W., W. Padilla, and S. Sonkusale, "Loss compensation in metamaterials through embedding of active transistor based negative differential resistance circuits," Optics Express, Vol. 20, No. 20, 22406-22411, 2012.
    doi:10.1364/OE.20.022406

    21. Katko, A., J. Barrett, and S. Cummer, "Time-varying transistor-based metamaterial for tunability, mixing, and efficient phase conjugation," Journal of Applied Physics, Vol. 115, No. 14, 144501, 2014.
    doi:10.1063/1.4871195

    22. Pozar, D., "Microwave Engineering," John Wiley and Sons, 2005.

    23. Steer, M., Microwave and RF Design: A Systems Approach, SciTech Publishing Company, Edison, NJ, 2010.

    24. Tsividis, Y., Operation and Modeling of the MOS Transistor, 2nd Ed., Oxford University Press, New York, NY., 1999.

    25. Sze, S. and K. Ng, Physics of Semiconductor Devices, 3rd Ed., John Wiley and Sons, Hoboken, NJ, 2007.

    26. Taur, Y. and T. Ning, "Fundamentals of Modern VLSI Devices," Cambridge University Press, 2009.

    27. Lee, K., M. Shur, T. Fjeldly, and T. Ytterdal, Semiconductor Device Modeling for VLSI, Prentice- Hall, Englewood Cliffs, NJ, 1993.

    28. Cummer, S., B.-I. Popa, and T. Hand, "Q-based design equations and loss limits for resonant metamaterials and experimental validation," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 1, 127-132, 2008.
    doi:10.1109/TAP.2007.912959

    29. Smith, D., S. Schultz, P. Markos, and C. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Physical Review B, Vol. 65, 195104, 2002.
    doi:10.1103/PhysRevB.65.195104