Vol. 155

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2016-03-14

Ultra-Compact Multi-Band Chiral Metamaterial Circular Polarizer Based on Triple Twisted Split-Ring Resonator

By Yongzhi Cheng, Chenjun Wu, Zheng Ze Cheng, and Rong Zhou Gong
Progress In Electromagnetics Research, Vol. 155, 105-113, 2016
doi:10.2528/PIER16012501

Abstract

An ultra-compact chiral metamaterial (CMM) using triple-layer twisted split-ring resonators (TSRRs) structure was proposed, which can function as a multi-band circular polarizer. This ultra-compact structure can convert an incident linearly y-polarized (x-polarized) wave propagating along the -z (+z) direction to the transmitted left circularly polarized (LCP) waves at 7.28 GHz, 13.22 GHz and 15.49 GHz while the right circularly polarized (RCP) waves are at 9.48 GHz. In addition, the large polarization extinction ratio (PER) of more than 20 dB across four resonance frequencies can be achieved. The experiment results are in good agreement with the numerical simulation results. The surface current distributions of the structure are analyzed to illustrate this linear to circular polarization conversion. The unit cell structure is extremely small both in longitudinal and transverse directions. Good performances and compact design of this CMM suggest promising applications in circular polarizers that need to be integrated with other compact devices.

Citation


Yongzhi Cheng, Chenjun Wu, Zheng Ze Cheng, and Rong Zhou Gong, "Ultra-Compact Multi-Band Chiral Metamaterial Circular Polarizer Based on Triple Twisted Split-Ring Resonator," Progress In Electromagnetics Research, Vol. 155, 105-113, 2016.
doi:10.2528/PIER16012501
http://jpier.org/PIER/pier.php?paper=16012501

References


    1. Pendry, J. B., "A chiral route to negative refraction," Science, Vol. 306, No. 19, 1353-1355, 2004.
    doi:10.1126/science.1104467

    2. Rogacheva, A. V., V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, "Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure," Phys. Rev. Lett., Vol. 97, No. 17, 177401, 2006.
    doi:10.1103/PhysRevLett.97.177401

    3. Plum, E., J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, "Metamaterial with negative index due to chirality," Phys. Rev. B, Vol. 79, No. 3, 035407(6, 2009.
    doi:10.1103/PhysRevB.79.035407

    4. Zhou, J., J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, "Negative refractive index due to chirality," Phys. Rev. B, Vol. 79, No. 12, 121104(3), 2009.
    doi:10.1103/PhysRevB.79.121104

    5. Li, Z., R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, "Chiral metamaterials with negative refractive index based on four ``U" split ring resonators," Appl. Phys. Lett., Vol. 97, No. 8, 081901(2), 2010.

    6. Cheng, Y., Y. Nie, and R. Z. Gong, "Giant optical activity and negative refractive index using complementary U-shaped structure assembly," Progress In Electromagnetics Research M, Vol. 25, 239-253, 2012.
    doi:10.2528/PIERM12070403

    7. Decker, M., M. W. Klein, M.Wegener, and S. Linden, "Circular dichroism of planar chiral magnetic metamaterials," Opt. Lett., Vol. 32, No. 7, 856-858, 2007.
    doi:10.1364/OL.32.000856

    8. Cheng, Y., Y. Nie, L. Wu, and R. Z. Gong, "Giant circular dichroism and negative refractive index of chiral metamaterial based on split-ring resonators," Progress In Electromagnetics Research, Vol. 138, 421-432, 2013.
    doi:10.2528/PIER13011202

    9. Lee, S., Z. Wang, C. Feng, J. Jiao, A. Khan, and L. Li, "Circular dichroism in planar extrinsic chirality metamaterial at oblique incident beam," Opt. Commun., Vol. 309, 201-204, 2013.
    doi:10.1016/j.optcom.2013.07.033

    10. Menzel, C., C. Helgert, C. Rockstuhl, E.-B. Kley, A. Taunnermann, T. Pertsch, and F. Lederer, "Asymmetric transmission of linearly polarized light at optical metamaterials," Phys. Rev. Lett., Vol. 104, 253902, 2010.
    doi:10.1103/PhysRevLett.104.253902

    11. Wei, Z., Y. Cao, Y. Fan, X. Yu, and H. Li, "Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators," Appl. Phys. Lett., Vol. 99, No. 22, 221907-3, 2011.
    doi:10.1063/1.3664774

    12. Huang, C., Y. Feng, J. Zhao, Z. Wang, and T. Jiang, "Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures," Phys. Rev. B, Vol. 85, 195131, 2012.
    doi:10.1103/PhysRevB.85.195131

    13. Dincer, F., C. Sabah, M. Karaaslan, E. Unal, M. Bakir, and U. Erdiven, "Asymmetric transmission of linearly polarized waves and dynamically wave rotation using chiral metamaterial," Progress In Electromagnetics Research, Vol. 140, 227-239, 2013.
    doi:10.2528/PIER13050601

    14. Cheng, Y. Z., Y. Nie, X. Wang, and R. Z. Gong, "An ultrathin transparent metamaterial polarization transformer based on a twist-split-ring resonator," Appl. Phys., A Mater. Sci. Process., Vol. 111, No. 1, 209-215, 2013.
    doi:10.1007/s00339-013-7546-1

    15. Wu, L., Z. Yang, Y. Cheng, R. Gong, M. Zhao, Y. Zheng, J. Duan, and X. Yuan, "Circular polarization converters based on bi-layered asymmetrical split ring metamaterials," Applied Physics A, Vol. 116, No. 2, 643-648, 2014.
    doi:10.1007/s00339-014-8252-3

    16. Ma, X., C. Huang, M. Pu, W. Pan, Y. Wang, and X. Luo, "Circular dichroism and optical rotation in twisted Y-shaped chiral metamaterial," Appl. Phys. Exp., Vol. 6, 022001, 2013.
    doi:10.7567/APEX.6.022001

    17. Jackson, J. D., Classical Electrodynamics, 3rd Ed., 205-207, Wiley, 1999.

    18. Liu, N., H. Liu, S. Zhu, and H. Giessen, "Stereometamaterials," Nat. Photon., Vol. 3, 157-162, 2009.
    doi:10.1038/nphoton.2009.4

    19. Decker, M., R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, "Twisted split-ring-resonator photonic metamaterial with huge optical activity," Opt. Lett., Vol. 35, No. 2, 1593-1595, 2010.
    doi:10.1364/OL.35.001593

    20. Powell, D. A., K. Hannam, I. V. Shadrivov, and Y. S. Kivshar, "Near-field interaction of twisted split-ring resonators," Phys. Rev. B, Vol. 83, 235420, 2011.
    doi:10.1103/PhysRevB.83.235420

    21. Liu, M., D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, "Optical activity and coupling in twisted dimer meta-atoms," Appl. Phys. Lett., Vol. 100, 111114, 2012.
    doi:10.1063/1.3694269

    22. Li, Z., M. Mutlu, and E. Ozbay, "Chiral metamaterials: From optical activity and negative refractive index to asymmetric transmission," J. Opt., Vol. 15, 023001, 2013.
    doi:10.1088/2040-8978/15/2/023001

    23. Li, M., L. Guo, and H. Yang, "Experimental and simulated study of dual-band chiral metamaterials with strong optical activity," Microwave and Optical Technology Letters, Vol. 56, No. 10, 2381-2385, 2014.
    doi:10.1002/mop.28597

    24. Hannam, K., D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, "Broadband chiral metamaterials with large optical activity," Phys. Rev. B, Vol. 89, 125105, 2014.
    doi:10.1103/PhysRevB.89.125105

    25. Zhao, Y., A. Belkin, and A. Alu, "Twisted optical metamaterials for planarized ultrathin broadband circular polarizers," Nat. Commun., Vol. 3, 870, 2012.
    doi:10.1038/ncomms1877

    26. Chen, J. and A. Zhang, "A novel design of circularly polarized antenna based on metamaterial," International Journal of Electronics, Vol. 100, No. 6, 770-778, 2013.
    doi:10.1080/00207217.2012.720952

    27. Hong, Q., T. Wu, X. Zhu, R. Lu, and S. T. Wu, "Designs of wide-view and broadband circular polarizers," Opt. Express, Vol. 13, No. 20, 8318-8331, 2005.
    doi:10.1364/OPEX.13.008318

    28. Ge, Z., M. Jiao, R. Lu, T. X. Wu, S. T. Wu, W. Y. Li, and C. K. Wei, "Wide-view and broadband circular polarizers for transflective liquid crystal displays," J. Display Technol., Vol. 4, No. 2, 129-138, 2008.
    doi:10.1109/JDT.2008.920178

    29. Gansel, J., M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M.Wegener, "Gold helix photonic metamaterial as broadband circular polarizer," Science, Vol. 325, No. 5947, 1513-1515, 2009.
    doi:10.1126/science.1177031

    30. Mutlu, M., A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, "Asymmetric chiral metamaterial circular polarizer based on four U-shaped split ring resonators," Opt. Lett., Vol. 36, No. 9, 1653-1655, 2011.
    doi:10.1364/OL.36.001653

    31. Ma, X., C. Huang, M. Pu, C. Hu, Q. Feng, and X. Luo, "Multi-band circular polarizer using planar spiral metamaterial structure," Opt. Express, Vol. 20, No. 14, 16050-16058, 2012.
    doi:10.1364/OE.20.016050

    32. Xie, L., H.-L. Yang, X. Huang, and Z. Li, "Multi-band circular polarizer using archimedean spiral structure chiral metamaterial with zero and negative refractive index," Progress In Electromagnetics Research, Vol. 141, 645-657, 2013.
    doi:10.2528/PIER13063003

    33. Yana, S. and G. A. E. Vandenbosch, "Compact circular polarizer based on chiral twisted double split-ring resonator," Appl. Phys. Lett., Vol. 102, 103503, 2013.
    doi:10.1063/1.4794940

    34. Xu, H. X., G. M. Wang, M. Q. Qi, T. Cai, and T. J. Cui, "Compact dual-band circular polarizer using twisted Hilbert-shaped chiral metamaterial," Opt. Express, Vol. 210, No. 21, 24912-24921, 2013.
    doi:10.1364/OE.21.024912

    35. Ye, Y., X. Li, F. Zhuang, and S. W. Chang, "Homogeneous circular polarizers using a bilayered chiral metamaterial," Appl. Phys. Lett., Vol. 99, 031111, 2011.
    doi:10.1063/1.3615054

    36. Cheng, Y., Y. Nie, Z. Cheng, and R. Z. Gong, "Dual-band circular polarizer and linear polarization transformer based on twisted split-ring structure asymmetric chiral metamaterial," Progress In Electromagnetics Research, Vol. 145, 263-272, 2014.
    doi:10.2528/PIER14020501

    37. Euler, M., V. Fusco, R. Cahill, and R. Dickie, "325 GHz single layer sub-millimeter wave FSS based split slot ring linear to circular polarization convertor," IEEE Trans. Antenn. Propag., Vol. 58, No. 7, 2457-2458, 2010.
    doi:10.1109/TAP.2010.2048874

    38. Wu, S., X. Huang, B. Xiao, Y. Jin, and H. Yang, "Multi-band circular polarizer based on twisted triple split-ring resonator," Chin. Phys. B, Vol. 23, No. 12, 127805, 2014.
    doi:10.1088/1674-1056/23/12/127805

    39. Li, Y., J. Zhang, S. Qu, J. Wang, L. Zheng, Y. Pang, Z. Xu, and A. Zhang, "Achieving wide- band linear-to-circular polarization conversion using ultra-thin bi-layered metasurfaces," Journal of Applied Physics, Vol. 117, No. 4, 044501, 2015.
    doi:10.1063/1.4906220

    40. Hodgkinson, I. J., A. Lakhtakia, Q. H. Wu, S. L. De, and M. W. McCall, "Ambichiral, equichiral and finely chiral layered structures," Opt. Commun., Vol. 239, 353, 2004.
    doi:10.1016/j.optcom.2004.06.005

    41. Cheng, Y. Z., Y. Nie, Z. Z. Cheng, L. Wu, X. Wang, and R. Z. Gong, "Broadband transparent metamaterial linear polarization transformer based on triple-split-ring resonators," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 14, 1850-1858, 2013.
    doi:10.1080/09205071.2013.825891

    42. Cheng, Y. Z., R. Z. Gong, Z. Z. Cheng, and Y. Nie, "Perfect dual-band circular polarizer based on twisted split-ring structure asymmetric chiral metamaterial," Applied Optics, Vol. 53, No. 25, 5763-5768, 2014.
    doi:10.1364/AO.53.005763

    43. Cheng, Y. Z., R. Z. Gong, and Z. Z. Cheng, "A photoexcited broadband switchable metamaterial absorber with polarization-insensitive and wide-angle absorption for terahertz waves," Optics Commun., Vol. 361, 41-46, 2016.
    doi:10.1016/j.optcom.2015.10.031