Vol. 155

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Wideband Multifunctional Metasurface for Polarization Conversion and Gain Enhancement

By Hai-Peng Li, Guang-Ming Wang, Jian-Gang Liang, and Xiang-Jun Gao
Progress In Electromagnetics Research, Vol. 155, 115-125, 2016


We propose a wideband multifunctional device which combines a linear-to-circular polarization convertor with focusing metasurface. The proposed design is built by a novel dual-layered metal cross and cross ring unit cell which exhibits satisfying performance for controlling the reflecting phase of the electromagnetic wave polarization-independently. The device is illuminated by a Vivaldi antenna, and the functions of polarization conversion and gain enhancement have been simultaneously achieved in the band of 9.12-10.2 GHz. In addition, the polarization helicity of the system can be reconfigured by rotating the feed antenna. The device has not only greatly presented the flexibility and superiority of the metasurface in steering the electromagnetic waves, but also promoted the development of the multifunctional metasurface.


Hai-Peng Li, Guang-Ming Wang, Jian-Gang Liang, and Xiang-Jun Gao, "Wideband Multifunctional Metasurface for Polarization Conversion and Gain Enhancement," Progress In Electromagnetics Research, Vol. 155, 115-125, 2016.


    1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics Uspekhi, Vol. 10, No. 4, 509-514, 1968.

    2. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, No. 6, 77-79, 2001.

    3. Xu, H.-X., G.-M. Wang, M. Q. Qi, T. Cai, and T. J. Cui, "Compact dual-band circular polarizer using twisted Hilbert-shaped chiral metamaterial," Optics Express, Vol. 21, No. 21, 24912-24921, 2013.

    4. Xu, H.-X., G.-M. Wang, M.-Q. Qi, and T. Cai, "Dual-band circular polarizer and asymmetric spectrum ¯lter using ultrathin compact chiral metamaterial," Progress In Electromagnetics Research, Vol. 143, 243-261, 2013.

    5. Yu, N. F., P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, "Light propagation with phase discontinuities: Generalized laws of reflection and refraction," Science, Vol. 334, 333-337, 2011.

    6. Ni, X., N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, "Broadband light bending with plasmonic nanoantennas," Science, Vol. 335, 427, 2012.

    7. Sun, S. L., Q. He, S. Y. Xiao, Q. Xu, X. Li, and L. Zhou, "Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves," Nature Mater., Vol. 11, 426-431, 2012.

    8. Zhao, J. J., B. W. Li, Z. N. Chen, and C. W. Qiu, "Redirection of sound waves using acoustic metasurface," Appl. Phys. Lett., Vol. 103, 151604, 2013.

    9. Yang, Q. L., J. Q. Gu, D. Y. Wang, X. Q. Zhang, Z. Tian, C. M. Ouyang, R. Singh, J. G. Han, and W. L. Zhang, "Efficient flat metasurface lens for terahertz imaging," Opt. Express, Vol. 22, No. 21, 25931-25939, 2014.

    10. Pors, A. and S. I. Bozhevolnyi, "Plasmonic metasurfaces for efficient phase control in reflection," Opt. Express, Vol. 21, No. 22, 27438-27451, 2013.

    11. Wei, Z. Y., Y. Cao, X. P. Su, Z. J. Gong, Y. Long, and H. Q. Li, "Highly efficient beam steering with a transparent metasurface," Opt. Express, Vol. 21, No. 9, 10739-10745, 2013.

    12. Pfeiffer, C., et al., "Efficient light bending with isotropic metamaterial Huygens' surfaces," Nano Lett., Vol. 14, No. 5, 2491-2497, 2014.

    13. Farahani, M. F. and H. Mosallaei, "Birefringent reflectarray metasurface for beam engineering in infrared," Opt. Lett., Vol. 38, No. 4, 462-464, 2013.

    14. Song, K., Y. H. Liu, C. R. Luo, and X. P. Zhao, "High-efficiency broadband and multiband cross- polarization conversion using chiral metamaterial," J. Phys. D: Appl. Phys., Vol. 47, 505104, 2014.

    15. Yang, Y. M., W. Y. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, "Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation," Nano Lett., Vol. 14, 1394-1399, 2014.

    16. Grady, N. K., et al., "Terahertz metamaterials for linear polarization conversion and anomalous refraction," Science, Vol. 340, 1304-1306, 2013.

    17. Zhu, L., F.-Y. Meng, L. Dong, J.-H. Fu, F. Zhang, and Q. Wu, "Polarization manipulation based on electromagnetically induced transparency-like (EIT-like) effect," Opt. Express, Vol. 21, No. 26, 32100-32110, 2013.

    18. Chen, H. Y., J. F. Wang, H. Ma, S. B. Qu, Z. Xu, A. X. Zhang, M. B. Yan, and Y. F. Li, "Ultra- wideband polarization conversion metasurfaces based on multiple plasmon resonances," J. Appl. Phys., 154504, 2014.

    19. Ma, H. F., G. Z. Wang, G. S. Kong, and T. J. Cui, "Broadband circular and linear polarization conversions realized by thin birefringent reflective metasurfaces," Opt. Mater. Express, Vol. 4, No. 8, 1718-1724, 2014.

    20. Pors, A., M. G. Nielsen, R. L. Eriksen, and S. I. Bozhevolnyi, "Broadband focusing flat mirrors based on plasmonic gradient metasurfaces," Nano Lett., Vol. 13, 829-834, 2013.

    21. Li, X., S. Y. Xiao, B. G. Cai, Q. He, T. J. Cui, and L. Zhou, "Flat metasurfaces to focus electromagnetic waves in reflection geometry," Opt. Lett., Vol. 37, No. 23, 4940-4942, 2012.

    22. Aieta, F., P. Genevet, M. A. Kats, N. F. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, "Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces," Nano Lett., Vol. 12, 4932-4936, 2012.

    23. Monticone, F., N. M. Estakhri, and A. Alu, "Full control of nanoscale optical transmission with a composite metascreen," Phys. Rev. Lett., Vol. 110, 203903, 2013.

    24. Chen, J., Q. Cheng, J. Zhao, D. S. Dong, and T.-J. Cui, "Reduction of radar cross section based on a metasurface," Progress In Electromagnetics Research, Vol. 146, 71-76, 2014.

    25. Cheng, J. and H. Mosallaei, "Optical metasurfaces for beam scanning in space," Opt. Lett., Vol. 39, No. 9, 2719-2722, 2014.