Vol. 154
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2016-01-05
Time-Dependent Lorentz-Mie-Debye Formulation for Electromagnetic Scattering from Dielectric Spheres (Invited Paper)
By
Progress In Electromagnetics Research, Vol. 154, 195-208, 2015
Abstract
Canonical solutions to frequency domain Maxwell's equations in the spherical coordinate system have found extensive use in the scientific literature. What is conspicuous by its absence is lack of such expressions for transient Maxwell systems. The existence of such expressions or approximations provide the means to glean interesting physics as well as validate existing numerical fullwave solvers. However, developing such expressions is beset with challenges; direct inverse Fourier transforms of frequency domain expressions are unstable. Successful approaches that ameliorate this instability are more recent endeavor. In this paper, we generalize our earlier contribution to this effort by exploiting a novel representation of the retarded potential to derive expressions for scattering from a dielectric sphere. Several results are provided that demonstrate the stability and accuracy of the method.
Citation
Jie Li, and Balasubramaniam Shanker, "Time-Dependent Lorentz-Mie-Debye Formulation for Electromagnetic Scattering from Dielectric Spheres (Invited Paper)," Progress In Electromagnetics Research, Vol. 154, 195-208, 2015.
doi:10.2528/PIER15121404
References

1. Maxwell, J. C., "A dynamical theory of the electromagnetic field," Philosophical Transactions of the Royal Society of London, Vol. 155, 459-512, 1865.
doi:10.1098/rstl.1865.0008

2. Uslenghi, P. L. E., "Scattering by an impedance sphere coated with a chiral layer," Electromagnetics, Vol. 10, 201-211, Jan. 1990.
doi:10.1080/02726349008908236

3. Mie, G., "Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen," Annalen der Physik, Vol. 330, No. 3, 377-445, 1908.
doi:10.1002/andp.19083300302

4. Lorenz, L., "Lysbevaegelsen i og uden for en af plane Lysbolger belyst Kugle," Det Kongelige Danske Videnskabernes Selskabs Skrifter, Vol. 6, No. 6, 1-62, 1890.

5. Debye, P., "Der Lichtdruck auf Kugeln von beliebigem material," Annalen der Physik, Vol. 30, No. 1, 57-136, 1909.
doi:10.1002/andp.19093351103

6. Logan, N., "Survey of some early studies of the scattering of plane waves by a sphere," Proceedings of the IEEE, Vol. 53, 773-785, Aug. 1965.
doi:10.1109/PROC.1965.4055

7. Clebsch, A., "Ueber die reflexion an einer Kugelfläche," Journal für die Reine Und Angewandte Mathematik, Vol. 61, 195-262, 1863.
doi:10.1515/crll.1863.61.195

8. Nicholson, J., "XVII. On the diffraction of short waves by a rigid sphere," Philosophical Magazine Series 6, Vol. 11, 193-205, Feb. 1906.
doi:10.1080/14786440609463439

9. Bromwich, T., "X. Electromagnetic waves," Philosophical Magazine Series 6, Vol. 38, 143-164, Jul. 1919.

10. Proudman, J., A. T. Doodson, and G. Kennedy, "Numerical results of the theory of the diffraction of a plane electromagnetic wave by a perfectly conducting sphere," Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 217, 279-314, Jan. 1918.
doi:10.1098/rsta.1918.0008

11. White, F. P., "The diffraction of plane electromagnetic waves by a perfectly reflecting sphere," Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 100, 505-525, Feb. 1922.
doi:10.1098/rspa.1922.0014

12. Wriedt, T., "Mie theory: A review," The Mie Theory, W. Hergert and T. Wriedt, eds., Vol. 169, 53-71, Springer Series in Optical Sciences, Springer Berlin Heidelberg, 2012.

13. Born, M. and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffaction of Light, Pergamon Press, 1959.

14. Lock, J. A. and G. Gouesbet, "Generalized lorenzmie theory and applications," Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 110, No. 11, 800-807, Light Scattering: Mie and More Commemorating 100 years of Mie's 1908 publication, 2009.
doi:10.1016/j.jqsrt.2008.11.013

15. Aden, A. L. and M. Kerker, "Scattering of electromagnetic waves from two concentric spheres," Journal of Applied Physics, Vol. 22, No. 10, 1951.
doi:10.1063/1.1699834

16. Geng, Y.-L., X.-B. Wu, L.-W. Li, and B.-R. Guan, "Mie scattering by a uniaxial anisotropic sphere," Phys. Rev. E, Vol. 70, 056609, Nov. 2004.

17. Bohren, C. F., "Light scattering by an optically active sphere," Chemical Physics Letters, Vol. 29, 458-462, Dec. 1974.
doi:10.1016/0009-2614(74)85144-4

18. Xu, F., K. Ren, G. Gouesbet, G. Gréhan, and X. Cai, "Generalized lorenz-mie theory for an arbitrarily oriented, located, and shaped beam scattered by a homogeneous spheroid," J. Opt. Soc. Am. A, Vol. 24, 119-131, Jan. 2007.
doi:10.1364/JOSAA.24.000119

19. Xu, Y.-L. and B. Gustafson, "A generalized multiparticle mie-solution: Further experimental verification," Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 70, No. 4-6, 395-419, Light Scattering by Non-Spherical Particles, 2001.
doi:10.1016/S0022-4073(01)00019-X

20. Hough, J. and G. Gouesbet, "Generalized LorenzMie theories, the third decade: A perspective," Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 110, No. 14, 1223-1238, 2009.

21. Han, Y., G. Gréhan, and G. Gouesbet, "Generalized lorenz-mie theory for a spheroidal particle with off-axis gaussian-beam illumination," Appl. Opt., Vol. 42, 6621-6629, Nov. 2003.

22. Waterman, P. C., "New formulation of acoustic scattering," The Journal of the Acoustical Society of America, Vol. 45, No. 6, 1417, 1969.
doi:10.1121/1.1911619

23. Ström, S., "T matrix for electromagnetic scattering from an arbitrary number of scatterers with continuously varying electromagnetic properties," Phys. Rev. D, Vol. 10, 2685-2690, Oct. 1974.

24. Strom, S. and W. Zheng, "The null field approach to electromagnetic scattering from composite objects," IEEE Transactions on Antennas and Propagation, Vol. 36, 376-383, Mar. 1988.
doi:10.1109/8.192121

25. Waterman, P. C., "The T-matrix revisited," J. Opt. Soc. Am. A, Vol. 24, 2257-2267, Aug. 2007.
doi:10.1364/JOSAA.24.002257

26. Nilsson, A. M., P. Alsholm, A. Karlsson, and S. Andersson-Engels, "T-matrix computations of light scattering by red blood cells," Appl. Opt., Vol. 37, 2735-2748, May 1998.
doi:10.1364/AO.37.002735

27. Mishchenko, M. I., G. Videen, N. G. Khlebtsov, and T.Wriedt, "Comprehensive T-matrix reference database: A 20122013 update," Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 123, 145-152, 2013.
doi:10.1016/j.jqsrt.2013.01.024

28. Mishchenko, M. I., M. Kahnert, D. W. Mackowski, and T. Wriedt, "Peter Waterman and his scientific legacy," Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 123, 1, 2013.
doi:10.1016/j.jqsrt.2013.01.025

29. Mishchenko, M. I. and P. A. Martin, "Peter Waterman and T-matrix methods," Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 123, 2-7, 2013.
doi:10.1016/j.jqsrt.2012.10.025

30. Mishchenko, M. I., L. Liu, and D. W. Mackowski, "T-matrix modeling of linear depolarization by morphologically complex soot and soot-containing aerosols," Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 123, 135-144, 2013.
doi:10.1016/j.jqsrt.2012.11.012

31. Khlebtsov, N. G., "T-matrix method in plasmonics: An overview," Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 123, 184-217, 2013.
doi:10.1016/j.jqsrt.2012.12.027

32. Wang, Y. and W. Chew, "A recursive t-matrix approach for the solution of electromagnetic scattering by many spheres," IEEE Transactions on Antennas and Propagation, Vol. 41, 1633-1639, Dec. 1993.
doi:10.1109/8.273306

33. Abraham, M. and R. Becker, The Classical Theory of Electricity and Magnetism, Blackie & Son Ltd., London, 1937.

34. Wicklund, J., "Extrapolation of the electromagnetic field,", Tech. Rep., Diamond Ordnance Fuze Laboratories, 1962.

35. Granzow, K. D., "Multipole theory in the time domain," Journal of Mathematical Physics, Vol. 7, 634, Dec. 1966.
doi:10.1063/1.1704976

36. Granzow, K. D., "Time-domain treatment of a spherical boundary-value problem," Journal of Applied Physics, Vol. 39, 3435, Nov. 1968.

37. Davidon, W. C., "Time-dependent multipole analysis," Journal of Physics A: Mathematical, Nuclear and General, Vol. 6, 1635-1646, Nov. 1973.

38. Campbell, W., J.Macek, and T. Morgan, "Relativistic time-dependent multipole analysis for scalar, electromagnetic, and gravitational fields," Phys. Rev. D, Vol. 15, 2156-2164, Apr. 1977.
doi:10.1103/PhysRevD.15.2156

39. Buyukdura, O. M. and S. S. Koc, "Two alternative expressions for the spherical wave expansion of the time domain scalar free-space Green's function and an application: Scattering by a soft sphere," Journal of the Acoustical Society of America, Vol. 101, No. 1, 87-91, 1997.
doi:10.1121/1.417968

40. Azizoglu, S., S. Koc, and O. Buyukdura, "Spherical wave expansion of the time-domain free- space dyadic Green's function," IEEE Transactions on Antennas and Propagation, Vol. 52, 677-683, Mar. 2004.
doi:10.1109/TAP.2004.825494

41. Sauter, S. and A. Veit, "Retarded boundary integral equations on the sphere: Exact and numerical solution," IMA Journal of Numerical Analysis, 2013.

42. Greengard, L., T. Hagstrom, and S. Jiang, "The solution of the scalar wave equation in the exterior of a sphere," Journal of Computational Physics, Vol. 274, 191-207, Oct. 2014.

43. Li, J., D. Dault, and B. Shanker, "A quasianalytical time domain solution for scattering from a homogeneous sphere," The Journal of the Acoustical Society of America, Vol. 135, 1676-1685, Apr. 2014.
doi:10.1121/1.4868398

44. Greengard, L., T. Hagstrom, and S. Jiang, "Extension of the lorenzmiedebye method for electromagnetic scattering to the time-domain," Journal of Computational Physics, Vol. 299, 98-105, 2015.
doi:10.1016/j.jcp.2015.07.009

45. Li, J. and B. Shanker, "Time-dependent debye-mie series solutions for electromagnetic scattering," IEEE Transactions on Antennas and Propagation, Vol. 63, 3644-3653, Aug. 2015.
doi:10.1109/TAP.2015.2439294

46. Hovenac, E. A. and J. A. Lock, "Assessing the contributions of surface waves and complex rays to far-field mie scattering by use of the debye series," J. Opt. Soc. Am. A, Vol. 9, 781-795, May 1992.
doi:10.1364/JOSAA.9.000781

47. Lock, J. A. and P. Laven, "Mie scattering in the time domain. Part 1. The role of surface waves," J. Opt. Soc. Am. A, Vol. 28, 1086-1095, Jun. 2011.
doi:10.1364/JOSAA.28.001086

48. Lock, J. A. and P. Laven, "Mie scattering in the time domain. Part II. The role of diffraction," J. Opt. Soc. Am. A, Vol. 28, 1096-1106, Jun. 2011.
doi:10.1364/JOSAA.28.001096

49. Li, R., X. Han, H. Jiang, and K. F. Ren, "Debye series for light scattering by a multilayered sphere," Appl. Opt., Vol. 45, 1260-1270, Feb. 2006.
doi:10.1364/AO.45.001260

50. Li, J., D. Dault, N. Nair, and B. Shanker, "Analysis of scattering from complex dielectric objects using the generalized method of moments," J. Opt. Soc. Am. A, Vol. 31, 2346-2355, Nov. 2014.

51. Hsiao, G. and R. Kleinman, "Mathematical foundations for error estimation in numerical solutions of integral equations in electromagnetics," IEEE Transactions on Antennas and Propagation, Vol. 45, 316-328, Mar. 1997.
doi:10.1109/8.558648

52. Shanker, B., A. Ergin, K. Aygun, and E. Michielssen, "Analysis of transient electromagnetic scattering from closed surfaces using a combined field integral equation," IEEE Transactions on Antennas and Propagation, Vol. 48, 1064-1074, Jul. 2000.

53. Shanker, B., A. Ergin, M. Lu, and E. Michielssen, "Fast analysis of transient electromagnetic scattering phenomena using the multilevel plane wave time domain algorithm," IEEE Transactions on Antennas and Propagation, Vol. 51, 628-641, Mar. 2003.
doi:10.1109/TAP.2003.809054

54. Grote, M. J. and J. B. Keller, "Exact nonreflecting boundary conditions for the time dependent wave equation," SIAM Journal on Applied Mathematics, Vol. 55, No. 2, 280-297, 1995.
doi:10.1137/S0036139993269266

55. Alpert, B., L. Greengard, and T. Hagstrom, "Nonreflecting boundary conditions for the timedependent wave equation," J. Comput. Phys., Vol. 180, 270-296, 2002.
doi:10.1006/jcph.2002.7093

56. Tijhuis, A. G., "Toward a stable marching-on-in-time method for two-dimensional transient electromagnetic scattering problems," Radio Science, Vol. 19, No. 5, 1311-1317, 1984.
doi:10.1029/RS019i005p01311

57. Sadigh, A. and E. Arvas, "Treating the instabilities in marching-on-in-time method from a different perspective [electromagnetic scattering]," IEEE Transactions on Antennas and Propagation, Vol. 41, 1695-1702, Dec. 1993.
doi:10.1109/8.273314

58. Ha-Duong, T., B. Ludwig, and I. Terrasse, "A Galerkin bem for transient acoustic scattering by an absorbing obstacle," International Journal for Numerical Methods in Engineering, Vol. 57, No. 13, 1845-1882, 2003.
doi:10.1002/nme.745

59. Wang, X., R. Wildman, D. S. Weile, and P. Monk, "A finite difference delay modeling approach to the discretization of the time domain integral equations of electromagnetics," IEEE Transactions on Antennas and Propagation, Vol. 56, 2442-2452, Aug. 2008.
doi:10.1109/TAP.2008.926753

60. Pray, A., N. Nair, and B. Shanker, "Stability properties of the time domain electric field integral equation using a separable approximation for the convolution with the retarded potential," IEEE Transactions on Antennas and Propagation, Vol. 60, 3772-3781, Aug. 2012.
doi:10.1109/TAP.2012.2201101

61. Van'tWout, E., D. van der Heul, H. van der Ven, and C. Vuik, "The influence of the exact evaluation of radiation fields in finite precision arithmetic on the stability of the time domain integral equation method," IEEE Transactions on Antennas and Propagation, Vol. 61, 6064-6074, Dec. 2013.
doi:10.1109/TAP.2013.2281365

62. Van't Wout, E., D. R. van der Heul, H. van der Ven, and C. Vuik, "Stability analysis of the marching-on-in-time boundary element method for electromagnetics," Journal of Computational and Applied Mathematics, Vol. 294, 358-371, 2016.
doi:10.1016/j.cam.2015.09.002