Vol. 155

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2016-01-13

Graphene-Based Infrared Lens with Tunable Focal Length

By Yanxiu Li, Fanmin Kong, and Kang Li
Progress In Electromagnetics Research, Vol. 155, 19-26, 2016
doi:10.2528/PIER15120201

Abstract

In modern information and communication technologies, manipulating focal length has been hot topic. Considering that the conductivity of graphene layer can effectively be tuned by purposely designing the thickness of the dielectric spacer underneath the graphene layer, a graphene-based lens with tunable focal length is proposed in this paper, and it can be used to collimate waves. The fabrication of the proposed graphene-based lens is purposed, and the performance of the lens is verified with finite-element method. The simulation results demonstrate that the graphene-based lens has excellent tunability and confinement. At the same time, the lens exhibits low loss in certain rang and large frequency bandwidth.

Citation


Yanxiu Li, Fanmin Kong, and Kang Li, "Graphene-Based Infrared Lens with Tunable Focal Length," Progress In Electromagnetics Research, Vol. 155, 19-26, 2016.
doi:10.2528/PIER15120201
http://jpier.org/PIER/pier.php?paper=15120201

References


    1. Bozhevolnyi, S. I., V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature, Vol. 440, 508-511, 2006.
    doi:10.1038/nature04594

    2. Engheta, N., "Circuits with light at nanoscales: Optical nanocircuits inspired by metamaterial," Science, Vol. 317, 1698-1702, 2007.
    doi:10.1126/science.1133268

    3. Ebbesen, T. W., C. Genet, and S. I. Bozhevolnyi, "Surface-plasmon circuitry," Physics Today, Vol. 61, 44, 2008.
    doi:10.1063/1.2930735

    4. De Leon, I. and P. Berini, "Amplification of long-range surface plasmons by a dipolar gain medium," Nature Photonics, Vol. 4, 382-387, 2010.
    doi:10.1038/nphoton.2010.37

    5. He, S., Y. He, and Y. Jin, "Revealing the truth about `trapped rainbow' storage of light in metamaterial," Scientific Reports, Vol. 2, 2012.

    6. Gan, Q., Y. J. Ding, and F. J. Bartoli, "Rainbow trapping and releasing at telecommunication wavelengths," Physical Review Letters, Vol. 102, 056801, 2009.
    doi:10.1103/PhysRevLett.102.056801

    7. Hu, H., D. Ji, X. Zeng, K. Liu, and Q. Gan, "Rainbow trapping in hyperbolic metamaterial waveguide," Scientific Reports, Vol. 3, 2013.

    8. Wang, G., H. Lu, and X. Liu, "Trapping of surface plasmon waves in graded grating waveguide system," Applied Physics Letters, Vol. 101, 013111, 2012.
    doi:10.1063/1.4733477

    9. Politano, A. and G. Chiarello, "Quenching of plasmons modes in air-exposed graphene-Ru contacts for plasmonic devices," Applied Physics Letters, Vol. 102, 201608, 2013.
    doi:10.1063/1.4804189

    10. Politano, A. and G. Chiarello, "Unravelling suitable graphene-metal contacts for graphene-based plasmonic devices," Nanoscale, Vol. 5, 8215-8220, 2013.
    doi:10.1039/c3nr02027d

    11. Koppens, F. H., D. E. Chang, and F. J. Garcia de Abajo, "Graphene plasmonics: A platform for strong light–matter interactions," Nano Letters, Vol. 11, 3370-3377, 2011.
    doi:10.1021/nl201771h

    12. Fang, Z., et al., "Gated tunability and hybridization of localized plasmons in nanostructured graphene," ACS Nano, Vol. 7, 2388-2395, 2013.
    doi:10.1021/nn3055835

    13. Novoselov, K. S., et al., "Electric field effect in atomically thin carbon films," Science, Vol. 306, 666-669, 2004.
    doi:10.1126/science.1102896

    14. Grigorenko, A., M. Polini, and K. Novoselov, "Graphene plasmonics," Nature Photonics, Vol. 6, 749-758, 2012.
    doi:10.1038/nphoton.2012.262

    15. Bonaccorso, F., Z. Sun, T. Hasan, and A. Ferrari, "Graphene photonics and optoelectronics," Nature Photonics, Vol. 4, 611-622, 2010.
    doi:10.1038/nphoton.2010.186

    16. Politano, A. and G. Chiarello, "Probing Young's modulus and Poisson's ratio in graphene/metal interfaces and graphite: A comparative study," Nano Research, 1-10, 2014.

    17. Matis, B. R., J. S. Burgess, F. A. Bulat, A. L. Friedman, B. H. Houston, and J. W. Baldwin, "Surface doping and band gap tunability in hydrogenated graphene," ACS Nano, Vol. 6, 17-22, 2012.
    doi:10.1021/nn2034555

    18. Politano, A., D. Campi, V. Formoso, and G. Chiarello, "Evidence of confinement of the π plasmon in periodically rippled graphene on Ru(0001)," Physical Chemistry Chemical Physics, Vol. 15, 11356-11361, 2013.
    doi:10.1039/c3cp51954f

    19. Politano., A. and G. Chiarello, "Plasmon modes in graphene: Status and prospect," Nanoscale, Vol. 6, 10927-10940, 2014.
    doi:10.1039/C4NR03143A

    20. Rast, L., T. Sullivan, and V. Tewary, "Stratified graphene/noble metal systems for low-loss plasmonics applications," Physical Review B, Vol. 87, 045428, 2013.
    doi:10.1103/PhysRevB.87.045428

    21. Liu, Y., T. Zentgraf, G. Bartal, and X. Zhang, "Transformational plasmon optics," Nano Letters, Vol. 10, 1991-1997, 2010.
    doi:10.1021/nl1008019

    22. Zentgraf, T., Y. Liu, M. H. Mikkelsen, J. Valentine, and X. Zhang, "Plasmonic luneburg and eaton lenses," Nature Nanotechnology, Vol. 6, 151-155, 2011.
    doi:10.1038/nnano.2010.282

    23. Della Valle, G. and S. Longhi, "Graded index surface-plasmon-polariton devices for subwavelength light management," Physical Review B, Vol. 82, 153411, 2010.
    doi:10.1103/PhysRevB.82.153411

    24. Hanson, G. W., "Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene," Journal of Applied Physics, Vol. 103, 064302, 2008.
    doi:10.1063/1.2891452

    25. Wang, W., S. P. Apell, and J. M. Kinaret, "Edge magnetoplasmons and the optical excitations in graphene disks," Physical Review B, Vol. 86, 125450, 2012.
    doi:10.1103/PhysRevB.86.125450

    26. Fallahi, A. and J. Perruisseau-Carrier, "Design of tunable biperiodic graphene metasurfaces," Physical Review B, Vol. 86, 195408, 2012.
    doi:10.1103/PhysRevB.86.195408

    27. Vakil, A. and N. Engheta, "Transformation optics using graphene," Science, Vol. 332, 1291-1294, 2011.
    doi:10.1126/science.1202691

    28. Mikhailov, S. and K. Ziegler, "New electromagnetic mode in graphene," Physical Review Letters, Vol. 99, 016803, 2007.
    doi:10.1103/PhysRevLett.99.016803

    29. Zeng, C., X. Liu, and G. Wang, "Electrically tunable graphene plasmonic quasicrystal metasurfaces for transformation optics," Scientific Reports, Vol. 4, 2014.

    30. Gao, W., J. Shu, C. Qiu, and Q. Xu, "Excitation of plasmonic waves in graphene by guided-mode resonances," ACS Nano, Vol. 6, 7806-7813, 2012.
    doi:10.1021/nn301888e

    31. Gutman, A., "Modified luneberg lens," Journal of Applied Physics, Vol. 25, 855-859, 1954.
    doi:10.1063/1.1721757

    32. Xu, H. J., W. B. Lu, Y. Jiang, and Z. G. Dong, "Beam-scanning planar lens based on graphene," Applied Physics Letters, Vol. 100, 051903, 2012.
    doi:10.1063/1.3681799

    33. Bolotin, K., K. Sikes, J. Hone, H. Stormer, and P. Kim, "Temperature-dependent transport in suspended graphene," Physical Review Letters, Vol. 101, 096802, 2008.
    doi:10.1103/PhysRevLett.101.096802

    34. Dorgan, V. E., A. Behnam, H. J. Conley, K. I. Bolotin, and E. Pop, "High-field electrical and thermal transport in suspended graphene," Nano Letters, Vol. 13, 4581-4586, 2013.
    doi:10.1021/nl400197w