Vol. 154
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2015-12-31
Quantum Mechanical Modeling of Electron-Photon Interactions in Nanoscale Devices (Invited Paper)
By
Progress In Electromagnetics Research, Vol. 154, 163-170, 2015
Abstract
An efficient quantum mechanical approach is formulated to model electron-photon interactions in nanoscale devices. Based on nonequilibrium Green's function formalism, electron-photon interactions and open boundaries in the nanoscale systems are taken into account in terms of self-energies. By separating different components in the electron-photon interactions, optical absorption and emission processes in the devices can be analyzed, and the method allows studies of different optoelectronic devices. In conjunction with density-functional tight-binding method, photo-induced current and other optical properties of nanoscale devices can be simulated without relying on empirical parameters. To demonstrate our approach, numerical studies of gallium nitride nanowire solar cells of realistic sizes are presented.
Citation
Rulin Wang, Yu Zhang, Guan Hua Chen, and Chi Yung Yam, "Quantum Mechanical Modeling of Electron-Photon Interactions in Nanoscale Devices (Invited Paper)," Progress In Electromagnetics Research, Vol. 154, 163-170, 2015.
doi:10.2528/PIER15112903
References

1. Meng, L. Y., Y. Shang, Q. K. Li, Y. F. Li, X. W. Zhan, Z. G. Shuai, R. G. E. Kimber, and A. B. Walker, "Dynamic Monte Carlo simulation for highly efficient polymer blend photovoltaics," J. Phys. Chem. B, Vol. 114, No. 1, 36-41, 2010.
doi:10.1021/jp907167u

2. Koster, L. J. A., E. C. P. Smits, V. D. Mihailetchi, and P. W. M. Blom, "Device model for the operation of Polymer/fullerene bulk heterojunction solar cells," Phys. Rev. B, Vol. 72, No. 8, 085205, 2005.
doi:10.1103/PhysRevB.72.085205

3. Keldysh, L.-V., "Diagram technique for nonequilibrium processes," Sov. Phys. JETP, Vol. 20, 1018, 1965.

4. Meir, Y. and N. S. Wingreen, "Landauer formula for the current through an interacting electron region," Phys. Rev. Lett., Vol. 68, 2512, 1992.
doi:10.1103/PhysRevLett.68.2512

5. Jauho, A.-P., N. S. Wingreen, and Y. Meir, "Time-dependent transport in interacting and noninteracting resonant-tunneling systems," Phys. Rev. B, Vol. 50, No. 8, 5528, 1994.
doi:10.1103/PhysRevB.50.5528

6. Zheng, X., F. Wang, C. Y. Yam, Y. Mo, and G. H. Chen, "Time-dependent density-functional theory for open systems," Phys. Rev. B, Vol. 75, No. 19, 195127, 2007.
doi:10.1103/PhysRevB.75.195127

7. Kwok, Y. H., H. Xie, C. Y. Yam, X. Zheng, and G. H. Chen, "Time-dependent density functional theory quantum transport simulation in non-orthogonal basis," J. Chem. Phys., Vol. 139, No. 22, 224111, 2013.
doi:10.1063/1.4840655

8. Wang, R. L., X. Zheng, Y. H. Kwok, H. Xie, G. H. Chen, and C. Y. Yam, "Time-dependent density functional theory for open systems with a positivity-preserving decomposition scheme for environment spectral functions," J. Chem. Phys., Vol. 142, No. 14, 144112, 2015.
doi:10.1063/1.4917172

9. Henrickson, L. E., "Nonequilibrium photocurrent modeling in resonant tunneling photodetectors," J. Appl. Phys., Vol. 91, No. 10, 6273-6281, 2002.
doi:10.1063/1.1473677

10. Galperin, M. and A. Nitzan, "Current-induced light emission and light-induced current in molecular-tunneling junctions," Phys. Rev. Lett., Vol. 95, 206802, 2005.
doi:10.1103/PhysRevLett.95.206802

11. Galperin, M. and A. Nitzan, "Molecular optoelectronics: The interaction of molecular conduction junctions with light," Phys. Chem., Vol. 14, 9421, 2012.

12. Zhang, Y., L. Y. Meng, C. Y. Yam, and G. H. Chen, "Quantum-mechanical prediction of nanoscale photovoltaics," J. Phys. Chem. Lett., Vol. 5, 1272, 2014.
doi:10.1021/jz5003154

13. Fetter, A. L. and J. D. Walecka, Quantum Theory of Many Particle Systems, Dover, New York, 1971.

14. Yam, C. Y., L. Y. Meng, Y. Zhang, and G. H. Chen, "A multiscale quantum mechanics/electromagnetics method for device," Chem. Soc. Rev., Vol. 44, 1763, 2015.
doi:10.1039/C4CS00348A

15. Meng, L. Y., C. Y. Yam, Y. Zhang, R. L. Wang, and G. H. Chen, "Multiscale modeling of plasmon-enhanced power conversion efficiency in nanostructured solar cells," J. Phys. Chem. Lett., Vol. 6, 4410, 2015.
doi:10.1021/acs.jpclett.5b01913

16. Porezag, D., T. Frauenheim, T. K¨ohler, G. Seifert, and R. Kaschner, "Construction of tight-binding-like potentials on the basis of density-functional theory: Application to carbon," Phys. Rev. B, Vol. 51, No. 19, 12947, 1995.
doi:10.1103/PhysRevB.51.12947

17. Elstner, M., D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, T. Frauenheim, S. Suhai, and G. Seifert, "Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties," Phys. Rev. B, Vol. 58, No. 11, 7260, 1998.
doi:10.1103/PhysRevB.58.7260

18. Pearton, S. J. and F. Ren, "GaN electronics advanced materials," Adv. Mater., Vol. 12, 1571, 2000.
doi:10.1002/1521-4095(200011)12:21<1571::AID-ADMA1571>3.0.CO;2-T

19. Shui, R. J., G. A. Vawter, C. G. Willison, M. M. Bridges, J. W. Lee, S. J. Pearton, and C. R. Abernathy, "Comparison of plasma etch techniques for III-V nitrides," Solid State Electron., Vol. 42, 2259, 1998.

20. Johnson, J. C., et al. "Single gallium nitride nanowire lasers," Nat. Mater., Vol. 1, 106, 2002.
doi:10.1038/nmat728

21. Wallentin, J., et al. "InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit," Science, Vol. 339, 1057-1060, 2013.
doi:10.1126/science.1230969

22. Krogstrup, P., et al. "Single-nanowire solar cells beyond the Shockley-Queisser limit," Nat. Photon., Vol. 6, 306-310, 2013.
doi:10.1038/nphoton.2013.32

23. Ramer, N. J. and A. M. Rappe, "Virtual-crystal approximation that works: Locating a compositional phase boundary in Pb(Zr1−xTix)O3," Phys. Rev. B, Vol. 62, R743, 2000.
doi:10.1103/PhysRevB.62.R743

24. Carter, D. J., J. D. Gale, B. Delley, and C. Stampfl, "Geometry and diameter dependence of the electronic and physical properties of GaN nanowires from first principles," Phys. Rev. B, Vol. 77, 115349, 2008.
doi:10.1103/PhysRevB.77.115349

25. Fang, D. Q., A. L. Rosa, Th. Frauenheim, and R. Q. Zhang, "Band gap engineering of GaN nanowires by surface functionalization," Appl. Phys. Lett., Vol. 94, 073116, 2009.
doi:10.1063/1.3086316