Vol. 154

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2015-12-31

Review of Black Hole Realization in Laboratory Base on Transformation Optics (Invited Paper)

By Shahram Dehdashti, Huaping Wang, Yuyu Jiang, Zhiwei Xu, and Hongsheng Chen
Progress In Electromagnetics Research, Vol. 154, 181-193, 2015
doi:10.2528/PIER15112505

Abstract

Realizations of celestial objects in the laboratory have been a tantalizing subject for human beings over centuries. In this paper, we review some of the interesting cases of realizations of black holes in the laboratory. We first review the recent progress in observed black holes realized through the isotropic coordinate transformation method, then discuss the realization of optical attractors. Finally, the Rindler space-time, as a one-dimensional black hole, by using the hyperbolic metamaterials, is discussed.

Citation


Shahram Dehdashti, Huaping Wang, Yuyu Jiang, Zhiwei Xu, and Hongsheng Chen, "Review of Black Hole Realization in Laboratory Base on Transformation Optics (Invited Paper)," Progress In Electromagnetics Research, Vol. 154, 181-193, 2015.
doi:10.2528/PIER15112505
http://jpier.org/PIER/pier.php?paper=15112505

References


    1. Butterfielf, J. and J. Earman, Philosophy of Physics, Part A, Elsevier, North-Holland, 2007.

    2. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, 207402, 2008.
    doi:10.1103/PhysRevLett.100.207402

    3. Atwater, H. A. and A. Polman, "Plasmonics for improved photovoltaic devices," Nature Mater., Vol. 9, 205, 2010.
    doi:10.1038/nmat2629

    4. Schuller, J. A., E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, "Plasmonics for extreme light concentration and manipulation," Nature Mater., Vol. 9, 193, 2010.
    doi:10.1038/nmat2630

    5. Pendry, J. B., "Controlling light on the nanoscale (invited review)," Progress In Electromagnetics Research, Vol. 147, 117-126, 2014.
    doi:10.2528/PIER14090305

    6. Ward, A. J. and J. B. Pendry, "Refraction and geometry in Maxwell's equations," Journal of Modern Optics, Vol. 43, 773, 1996.
    doi:10.1080/09500349608232782

    7. Schurig, D., J. B. Pendry, and D. R. Smith, "Calculation of material properties and ray tracing in transformation media," Optics Express, Vol. 14, 9794, 2006.
    doi:10.1364/OE.14.009794

    8. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780, 2006.
    doi:10.1126/science.1125907

    9. Leonhardt, U., "Optical conformal mapping," Science, Vol. 312, 1777, 2006.
    doi:10.1126/science.1126493

    10. Sheng, C., H. Liu, Y.Wang, S. N. Zhu, and D. A. Genov, "Trapping light by mimicking gravitational lensing," Nat. Photonics., Vol. 7, 902, 2013.
    doi:10.1038/nphoton.2013.247

    11. Genov, D. A., "Optical black-hole analogues," Nat. Photonics., Vol. 5, 76, 2011.
    doi:10.1038/nphoton.2011.5

    12. Reznik, B., "Origin of the thermal radiation in a solid-state analogue of a black hole," Phys. Rev. D, Vol. 62, 044044, 2000.
    doi:10.1103/PhysRevD.62.044044

    13. Smolyaninov, I. and Y. J. Hung, "Modeling of time with metamaterials," J. Opt. Soc. Am. B, Vol. 28, 1591, 2011.
    doi:10.1364/JOSAB.28.001591

    14. Smolyaninov, I. and E. E. Narimanov, "Metric signature transitions in optical metamaterials," Phys. Rev. Lett., Vol. 105, 067402, 2010.
    doi:10.1103/PhysRevLett.105.067402

    15. Teixeira, F. L. and W. C. Chew, "Differential forms, metrics, and the reflectionless absorption of electromagnetic waves," Journal of Electromagnetic Waves and Applications, Vol. 13, No. 5, 655-686(22), 1999.
    doi:10.1163/156939399X01104

    16. Chang, Z. and G. Hu, "Elastic wave omnidirectional absorbers designed by transformation method," Applied Phys. Lett., Vol. 101, 054102, 2012.
    doi:10.1063/1.4740077

    17. Leonhardt, U. and T. G. Philbin, "General relativity in electrical engineering," New J. Phys., Vol. 8, 247, 2006.
    doi:10.1088/1367-2630/8/10/247

    18. Odabasi, H., F. L. Teixeira, and W. C. Chew, "Impedance-matched absorbers and optical pseudo black holes," J. Opt. Soc. Am. B, Vol. 5, 1317, 2011.
    doi:10.1364/JOSAB.28.001317

    19. Lu, W., J. Jin, Z. Lin, and H. Chen, "A simple design of an artificial electromagnetic black hole," J. App. Phys., Vol. 108, 064517, 2010.
    doi:10.1063/1.3485819

    20. Cheng, Q., T. J. Cui, W. X. Jiang, and B. G. Cai, "An omnidirectional electromagnetic absorber made of metamaterials," New J. Phys., Vol. 12, 063006, 2010.
    doi:10.1088/1367-2630/12/6/063006

    21. Argyropoulos, C., E. Kallos, and Y. Hao, "FDTD analysis of the optical black hole," J. Opt. Soc. Am. B, Vol. 10, 2020, 2010.
    doi:10.1364/JOSAB.27.002020

    22. Wang, H.-W. and L.-W. Chen, "Wide-angle absorber achieved by optical black holes using graded index photonic crystals," J. Opt. Soc. Am. B, Vol. 8, 2222, 2012.
    doi:10.1364/JOSAB.29.002222

    23. Narimanov, E. E. and A. V. Kildishev, "Optical black hole: Broadband omnidirectional light absorber," Applied Phys. Lett., Vol. 95, 041106, 2009.
    doi:10.1063/1.3184594

    24. Lee, Y. Y., E. S. Kang, K. H. Jung, J. W. Lee, and D. Ahn, "Elliptic cylindrical pseudo-optical black hole for omnidirectional light absorber," J. Opt. Soc. Am. B, Vol. 8, 1948, 2014.
    doi:10.1364/JOSAB.31.001948

    25. Prokopeva, L. J., E. E. Narimanov, and A. V. Kildishev, "Elliptic cylindrical pseudo-optical black hole for omnidirectional light absorber: Comment," J. Opt. Soc. Am. B, Vol. 4, 719, 2015.
    doi:10.1364/JOSAB.32.000719

    26. Kildishev, A. V., L. J. Prokopeva, and E. E. Narimanov, "Cylinder light concentrator and absorber: Theoretical description," Opt. Express, Vol. 18, 16646, 2010.
    doi:10.1364/OE.18.016646

    27. Qiu, J., J. Y. Tan, L. H. Liu, and P.-F. Hsu, "Infrared radiative properties of two-dimensional square optical black holes," Journal of Quantitative Spectroscopy & Radiative Transfer, Vol. 112, 2584, 2011.
    doi:10.1016/j.jqsrt.2011.08.002

    28. Mackay, T. G. and A. Lakhtakia, "Towards a metamaterial simulation of a spinning cosmic string," Phys. Lett. A, Vol. 374, 2305, 2010.
    doi:10.1016/j.physleta.2010.03.061

    29. Chen, H., R.-X. Miao, and M. Li, "Transformation optics that mimics the system outside a Schwarzschild black hole," Opt. Exp., Vol. 14, 15183, 2010.
    doi:10.1364/OE.18.015183

    30. Genov, D. A., S. Zhang, and X. Zhang, "Mimicking celestial mechanics in metamaterials," Nat. Phys., Vol. 5, 687, 2009.
    doi:10.1038/nphys1338

    31. Khorasani, S. and B. Rashidian, "Optical anisotropy of schwarzschild metric within equivalent medium framework," Optics Communications, Vol. 283, 1222, 2010.
    doi:10.1016/j.optcom.2009.11.090

    32. Nerkararyan, K. V., S. K. Nerkararyan, and S. I. Bozhevolnyi, "Plasmonic black-hole: broadband omnidirectional absorber of gap surface plasmons," Opt. Lett., Vol. 22, 4311, 2011.
    doi:10.1364/OL.36.004311

    33. Qiu, J., J. Y. Tan, L. H. Liu, and P.-F. Hsu, "Radiative properties of optical board embedded with optical black holes," Journal of Quantitative Spectroscopy & Radiative Transfer, Vol. 112, 832, 2011.
    doi:10.1016/j.jqsrt.2010.10.017

    34. Mackay, T. G. and A. Lakhtakia, "Towards a realization of Schwarzschild-(anti-)de Sitter spacetime as a particulate metamaterial," Phys. Rev. B, Vol. 83, 195424, 2011.
    doi:10.1103/PhysRevB.83.195424

    35. Smolyaninov, I. I., "Virtual black holes in hyperbolic metamaterials,", Arxive: 1101.4625, 2011.

    36. Zhang, Y.-L., X.-Z. Dong, M.-L. Zheng, Z.-S. Zhao, and X.-M. Duan, "Steering electromagnetic beams with conical curvature singularities," Opt. Lett., Vol. 40, 4784, 2015.

    37. Boston, B. R., "Time travel in transformation optics: Metamaterials with closed null geodesics," Phys. Rev. D., Vol. 91, 124035, 2015.
    doi:10.1103/PhysRevD.91.124035

    38. Smolyaninov, I., "Hyperbolic metamaterials,", arXive: 1510.07137, 2015.

    39. Smolyaninov, I., E. Hwang, and E. E. Narimanov, "Hyperbolic metamaterial interfaces: Hawking radiation from Rindler horizons and spacetime signature transitions," Phys. Rev. D, Vol. 85, 235122, 2012.
    doi:10.1103/PhysRevB.85.235122

    40. Smolyaninov, I., "Surface plasmon toy model of a rotating black hole," New J. Phys., Vol. 5, 147, 2003.
    doi:10.1088/1367-2630/5/1/147

    41. Smolyaninov, I., "Critical opalescence in hyperbolic metamaterials," J. Opt., Vol. 13, 125101, 2011.
    doi:10.1088/2040-8978/13/12/125101

    42. Smolyaninov, I., E. Hwang, and E. Narimanov, "Hyperbolic metamaterial interfaces: Hawking radiation from Rindler horizons and spacetime signature transitions," Phys. Rev. B, Vol. 85, 235122, 2012.
    doi:10.1103/PhysRevB.85.235122

    43. Smolyaninov, I. and Y. Hung, "Minkowski domain walls in hyperbolic metamaterials," Phys. Lett. A, Vol. 373, 353, 2013.
    doi:10.1016/j.physleta.2012.11.056

    44. Smolyaninov, I., "Quantum electromagnetic black holes in a strong magnetic field," J. Phys. G: Nucl. Part. Phys., Vol. 40, 015005, 2013.
    doi:10.1088/0954-3899/40/1/015005

    45. Smolyaninov, I., Y. Hung, and E. Hwang, "Experimental modeling of cosmological inflation with metamaterials," Phys. Lett. A, Vol. 376, 2575, 2012.
    doi:10.1016/j.physleta.2012.07.010

    46. Kinsler, P. and M. W. McCall, "The futures of transformations and metamaterials," Photon. Nanostruct. Fundam. Appl., Vol. 15, 10, 2015.
    doi:10.1016/j.photonics.2015.04.005

    47. McCall, M. W., A. Favaro, P. Kinsler, and A. Boardman, "A spacetime cloak, or a history editor," J. Opt., Vol. 13, 024003, 2011.
    doi:10.1088/2040-8978/13/2/024003

    48. Kinsler, P. and M. W. McCall, "Transformation devices: carpets in space and space-time," Phys. Rev. A, Vol. 81, 063818, 2014.
    doi:10.1103/PhysRevA.89.063818

    49. Halimeh, J. C., R. T. Thompson, and M. Wegener, "Invisibility cloaks in relativistic motion,", arXive: 1510.06144, 2015.

    50. Susskind, L. and J. Lindesay, An Introduction to Black Holes, Information and the String Theory Revolution, World Scientific, Singapore, 2005.

    51. Leonhardt, U., "On cosmology in the laboratory," Phil. Trans. R. Soc. A, Vol. 373, 20140354, 2015.
    doi:10.1098/rsta.2014.0354

    52. Faccio, D., F. Belgiorno, S. Cacciatori, V. Gorini, S. Liberati, and U. Moschella, Analogue Gravity Phenomenology: Analogue Spacetimes and Horizons, from Theory to Experiment, Springer, Switzerland, 2013.

    53. Gron, O. and S. Hervik, Einsteins General Theory of Relativity, Springer, New York, 2007.
    doi:10.1007/978-0-387-69200-5

    54. Leonhardt, U. and T. G. Philbin, Geometry and Light: The Science of Invisibility, Dover, Mineola, NY, 2010.

    55. Misner, C. W., K. Thorne, and J. A. Wheeler, Gravitation, W. H. Freeman and Company, New York, 1973.

    56. Landau, L. and E. M. Lifshitz, The Classical Theory of Fields, Elsevier, Oxford, 2000.

    57. Padmanabhan, T., Gravitation, Cambridge University Press, Cambridge, 2010.
    doi:10.1017/CBO9780511807787

    58. Kaliteevski, M. A., R. A. Abram, V. V. Nikolaev, and G. S. Sololovski, "Bragg reflectors for cylindrical waves," J. Mod. Opt., Vol. 46, 875, 1999.
    doi:10.1080/09500349908231310

    59. Zimmermann, E., R. Dandliker, and N. Souli, "Scattering of an off-axis Gaussian beam by a dielectric cylinder compared with a rigorous electromagnetic approach," J. Opt. Soc. Am., Vol. 12, 398, 1995.
    doi:10.1364/JOSAA.12.000398

    60. Bohren, C. F. and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley, New York, 1983.

    61. Landau, L. and E. Lifshitz, Electrodynamics of Continuous Media, Elsevier, Oxford, 2004.

    62. Dehdashti, S., R. Roknizadeh, and A. Mahdifar, "Analogue special and general relativity by optical multilayer thin films: the Rindler space case," J. Mod. Opt., Vol. 60, 233, 2013.
    doi:10.1080/09500340.2013.769638