Vol. 152

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2015-07-29

Extremely Sub-Wavelength Negative Index Metamaterial

By Xu Zhang, Elvis Usi, Suhail K. Khan, Mehdi Sadatgol, and Durdu Oe Guney
Progress In Electromagnetics Research, Vol. 152, 95-104, 2015
doi:10.2528/PIER15061807

Abstract

We present an extremely sub-wavelength negative index metamaterial structure operating at radio frequency. The unit cell of the metamaterial consists of planar spiral and meandering wire structures separated by dielectric substrate. The ratio of the free space wavelength to unit cell size in the propagation direction is record breaking 1733 around the resonance frequency. The proposed metamaterial also possesses the most extreme refractive index of -109 that has been recorded to date. Underlying magnetic and electric response originate from the spiral and meandering wire, respectively. We show that the meandering wire is the key element to improve the transparency of the negative index metamaterial.

Citation


Xu Zhang, Elvis Usi, Suhail K. Khan, Mehdi Sadatgol, and Durdu Oe Guney, "Extremely Sub-Wavelength Negative Index Metamaterial," Progress In Electromagnetics Research, Vol. 152, 95-104, 2015.
doi:10.2528/PIER15061807
http://jpier.org/PIER/pier.php?paper=15061807

References


    1. Walser, R. M., "Electromagnetic metamaterials," Complex Mediums II: Beyond Linear Isotropic Dielectrics, A. Lakhtakia, W. S. Weiglhofer, and I. J. Hodgkinson, eds., Proc. SPIE, Vol. 4467, 1-15, 2001.

    2. Cai, W. and V. Shalaev, Optical Metamaterials: Fundamentals and Applications, Academic, 2010.

    3. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Usp., Vol. 10, 509-514, 1968.
    doi:10.1070/PU1968v010n04ABEH003699

    4. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966, 2000.
    doi:10.1103/PhysRevLett.85.3966

    5. Jacob, Z., L. V. Alekseyev, and E. Narimanov, "Optical hyperlens: Far-field imaging beyond the diffraction limit," Opt. Express, Vol. 14, 8247-8256, 2006.
    doi:10.1364/OE.14.008247

    6. Liu, Z., H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical hyperlens magnifying sub-diffraction-limited objects," Science, Vol. 315, 1686, 2007.
    doi:10.1126/science.1137368

    7. Zhang, X. and Z. Liu, "Superlenses to overcome the diffraction limit," Nat. Mater., Vol. 7, 435-441, 2008.
    doi:10.1038/nmat2141

    8. Rho, J., Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, "Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies," Nat. Commun., Vol. 1, 143, 2010.
    doi:10.1038/ncomms1148

    9. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780-1782, 2006.
    doi:10.1126/science.1125907

    10. Leonhardt, U., "Optical conformal mapping," Science, Vol. 312, 1777-1780, 2006.
    doi:10.1126/science.1126493

    11. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, 2006.
    doi:10.1126/science.1133628

    12. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, 207402, 2008.
    doi:10.1103/PhysRevLett.100.207402

    13. Aydin, K., V. E. Ferry, R. M. Briggs, and H. A. Atwater, "Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers," Nature Commun., Vol. 2, 517, 2011.
    doi:10.1038/ncomms1528

    14. Guney, D. O. and D. A. Meyer, "Negative refraction gives rise to the Klein paradox," Phys. Rev. A, Vol. 79, 063834, 2009.
    doi:10.1103/PhysRevA.79.063834

    15. Smolyaninov, I. I. and E. E. Narimanov, "Metric signature transitions in optical metamaterials," Phys. Rev. Lett., Vol. 105, 067402, 2010.
    doi:10.1103/PhysRevLett.105.067402

    16. Bulu, I., H. Caglayan, K. Aydin, and E. Ozbay, "Compact size highly directive antennas based on the SRR metamaterial medium," New J. Phys., Vol. 7, 223, 2005.
    doi:10.1088/1367-2630/7/1/223

    17. Odabasi, H., F. Teixeira, and D. O. Guney, "Electrically small, complementary electric-field-coupled resonator antennas," J. Appl. Phys., Vol. 113, 084903, 2013.
    doi:10.1063/1.4793090

    18. Vora, A., J. Gwamuri, N. Pala, A. Kulkarni, J. M. Pearce, and D. O. Guney, "Exchanging ohmic losses in metamaterial absorbers with useful optical absorption for photovoltaics," Sci. Rep., Vol. 4, 4901, 2014.
    doi:10.1038/srep04901

    19. Aslam, M. I. and D. O. Guney, "On negative index metamaterial spacers and their unusual optical properties," Progress In Electromagnetics Research B, Vol. 47, 203-217, 2013.
    doi:10.2528/PIERB12111908

    20. Valentine, J., S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, "Three-dimensional optical metamaterial with a negative refractive index," Nature, Vol. 455, 376-379, 2008.
    doi:10.1038/nature07247

    21. Guney, D. O., Th. Koschny, M. Kafesaki, and C. M. Soukoulis, "Connected bulk negative index photonic metamaterials," Opt. Lett., Vol. 34, 506-508, 2009.
    doi:10.1364/OL.34.000506

    22. Guney, D. O., Th. Koschny, and C. M. Soukoulis, "Intra-connected three-dimensionally isotropic bulk negative index photonic metamaterial," Opt. Express, Vol. 18, 12348-12353, 2010.
    doi:10.1364/OE.18.012348

    23. Garcia-Meca, C., J. Hurtado, J. Marti, A. Martinez, W. Dickson, and A. V. Zayats, "Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths," Phys. Rev. Lett., Vol. 106, 067402, 2011.
    doi:10.1103/PhysRevLett.106.067402

    24. Aslam, M. I. and D. O. Guney, "Surface plasmon driven scalable low-loss negative-index metamaterial in the visible spectrum," Phys. Rev. B, Vol. 84, 195465, 2011.
    doi:10.1103/PhysRevB.84.195465

    25. Aslam, M. I. and D. O. Guney, "Dual band double-negative polarization independent metamaterial for the visible spectrum," J. Opt. Soc. Am. B, Vol. 29, 2839-2847, 2012.
    doi:10.1364/JOSAB.29.002839

    26. Chen, W.-C., C. M. Bingham, K. M. Mak, N. W. Caira, and W. J. Padilla, "Extremely sub-wavelength planar magnetic metamaterials," Phys. Rev. B, Vol. 85, 201104, 2012.
    doi:10.1103/PhysRevB.85.201104

    27. Decker, M., I. Staude, I. I. Shishkin, K. B. Samusev, P. Parkinson, V. K. A. Sreenivasan, A. Minovich, A. E. Miroshnichenko, A. Zvyagin, C. Jagadish, D. N. Neshev, and Y. S. Kivshar, "Dual-channel spontaneous emission of quantum dots in magnetic metamaterials," Nat. Commun., Vol. 4, 2949, 2013.
    doi:10.1038/ncomms3949

    28. Plum, E., V. A. Fedotov, P. Kuo, D. P. Tsai, and N. I. Zheludev, "Towards the lasing spaser: Controlling metamaterial optical response with semiconductor quantum dots," Opt. Express, Vol. 17, 8548-8551, 2009.
    doi:10.1364/OE.17.008548

    29. Moritake, Y., K. Nakayama, T. Suzuki, H. Kurosawa, T. Kodama, S. Tomita, H. Yanagi, and T. Ishihara, "Lifetime reduction of a quantum emitter with quasiperiodic metamaterials," Phys. Rev. B, Vol. 90, 075146, 2014.
    doi:10.1103/PhysRevB.90.075146

    30. Benz, A., S. Campione, S. Liu, I. Montaño, J. F. Klem, A. Allerman, J. R.Wendt, M. B. Sinclair, F. Capolino, and I. Brener, "Strong coupling in the sub-wavelength limit using metamaterial nanocavities," Nat. Commun., Vol. 4, 2882, 2013.
    doi:10.1038/ncomms3882

    31. Guney, D. O. and D. A. Meyer, "Creation of entanglement and implementation of quantum logic gate operations using a three-dimensional photonic crystal single-mode cavity," J. Opt. Soc. Am. B, Vol. 24, 283-294, 2007.
    doi:10.1364/JOSAB.24.000283

    32. Guney, D. O. and D. A. Meyer, "Integrated conditional teleportation and readout circuit based on a photonic crystal single chip," J. Opt. Soc. Am. B, Vol. 24, 391-397, 2007.
    doi:10.1364/JOSAB.24.000391

    33. Brune, M., F. Schmidt-Kaler, A. Maali, J. Dreyer, E. Hagley, J. M. Raimond, and S. Haroche, "Quantum Rabi oscillation: A direct test of field quantization in a cavity," Phys. Rev. Lett., Vol. 76, 1800, 1996.
    doi:10.1103/PhysRevLett.76.1800

    34. Brune, M., E. Hagley, J. Dreyer, X. Maitre, A. Maali, C. Wunderlich, J. M. Raimond, and S. Haroche, "Observing the progressive decoherence of the ``meter'' in a quantum measurement," Phys. Rev. Lett., Vol. 77, 4887, 1996.
    doi:10.1103/PhysRevLett.77.4887

    35. Turchette, Q. A., D. Kielpinski, B. E. King, D. Leibfreid, D. M. Meekhof, C. J. Myatt, M. A. Rowe, C. A. Sackett, C. S. Wood, W. M. Itano, C. Monroe, and D. J. Wineland, "Heating of trapped ions from the ground state," Phys. Rev. A, Vol. 61, 063418, 2000.
    doi:10.1103/PhysRevA.61.063418

    36. Raimond, J. M., M. Brune, and S. Haroche, "Manipulating quantum entanglement with atoms and photons in a cavity," Rev. Mod. Phys., Vol. 73, 565, 2001.
    doi:10.1103/RevModPhys.73.565

    37. Vandersypen, L. M. K., M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sherwood, and I. L. Chuang, "Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance," Nature, Vol. 414, 883, 2001.
    doi:10.1038/414883a

    38. Kielpinski, D., C. Monroe, and D. J. Wineland, "Architecture for a large-scale ion-trap quantum computer," Nature, Vol. 417, 709, 2002.
    doi:10.1038/nature00784

    39. Vandersypen, L. M. K. and I. L. Chuang, "NMR techniques for quantum control and computation," Rev. Mod. Phys., Vol. 76, 1037, 2005.
    doi:10.1103/RevModPhys.76.1037

    40. Ospelkaus, C., U. Warring, Y. Colombe, K. R. Brown, J. M. Amini, D. Leibfreid, and D. J. Wineland, "Microwave quantum logic gates for trapped ions," Nature, Vol. 476, 181, 2011.
    doi:10.1038/nature10290

    41. Smith, D. R., S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B, Vol. 65, 195104, 2002.
    doi:10.1103/PhysRevB.65.195104

    42. Menzel, C., C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, "Retrieving effective parameters for metamaterials at oblique incidence," Phys. Rev. B, Vol. 77, 195328, 2008.
    doi:10.1103/PhysRevB.77.195328

    43. Koschny, Th., P. Markos, E. N. Economou, D. R. Smith, D. C. Vier, and C. M. Soukoulis, "Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials," Phys. Rev. B, Vol. 71, 245105, 2005.
    doi:10.1103/PhysRevB.71.245105

    44. Zhen, L., J. T. Jiang, W. Z. Shao, and C. Y. Xu, "Resonance-antiresonance electromagnetic behavior in a disordered dielectric composite," Appl. Phys. Lett., Vol. 90, 142907, 2007.
    doi:10.1063/1.2719023

    45. Smigaj, W. and B. Gralak, "Validity of the effective-medium approximation of photonic crystals," Phys. Rev. B, Vol. 77, 235445, 2008.
    doi:10.1103/PhysRevB.77.235445

    46. Tserkezis, C., "Effective parameters for periodic photonic structures of resonant elements," J. Phys: Condens. Matter, Vol. 21, 155404, 2009.
    doi:10.1088/0953-8984/21/15/155404

    47. Ludwig, A. and K. J. Webb, "Accuracy of effective medium parameter extraction procedures for optical metamaterials," Phys. Rev. B, Vol. 81, 113103, 2010.
    doi:10.1103/PhysRevB.81.113103

    48. Alu, A., "Restoring the physical meaning of metamaterial constitutive parameters,", arXiv:1012.1353, Submitted on Dec. 6, 2010.

    49. Alu, A., "First-principles homogenization theory for periodic metamaterials," Phys. Rev. B, Vol. 84, 075153, 2011.
    doi:10.1103/PhysRevB.84.075153

    50. Kolb, P. W., T. S. Salter, J. A. McGee, H. D. Drew, and W. J. Padilla, "Extreme subwavelength electric GHz metamaterials," J. Appl. Phys., Vol. 110, 054906, 2011.
    doi:10.1063/1.3633213

    51. Erentok, A., R. W. Ziolkowski, J. A. Nielsen, R. B. Greegor, C. G. Parazzoli, M. H. Tanielian, S. A. Cummer, B. Popa, T. Hand, D. C. Vier, and S. Schultz, "Lumped element-based, highly sub-wavelength, negative index metamaterials at UHF frequencies," J. Appl. Phys., Vol. 104, 034901, 2008.
    doi:10.1063/1.2959377

    52. Choi, M., S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, "A terahertz metamaterial with unnaturally high refractive index," Nature, Vol. 470, 369-373, 2011.
    doi:10.1038/nature09776

    53. Zhang, X., S. Debnath, and D. O. Guney, "Hyperbolic metamaterial feasible for fabrication with direct laser writing processes," J. Opt. Soc. Am. B, Vol. 32, 1013-1021, 2015.
    doi:10.1364/JOSAB.32.001013

    54. Rill, M. S., C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, "Photonic metamaterials by direct laser writing and silver chemical vapour deposition," Nat. Mater., Vol. 7, 543-546, 2008.
    doi:10.1038/nmat2197

    55. Gansel, J. K., M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, "Gold helix photonic metamaterial as broadband circular polarizer," Science, Vol. 325, 1513-1515, 2009.
    doi:10.1126/science.1177031

    56. Rill, M. S., C. E. Kriegler, M. Thiel, G. von Freymann, S. Linden, and M. Wegener, "Negative-index bianisotropic photonic metamaterial fabricated by direct laser writing and silver shadow evaporation," Opt. Lett.,, Vol. 34, 19-21, 2009.
    doi:10.1364/OL.34.000019

    57. Guney, D. O., Th. Koschny, and C. M. Soukoulis, "Reducing ohmic losses in metamaterials by geometric tailoring," Phys. Rev. B, Vol. 80, 125129, 2009.
    doi:10.1103/PhysRevB.80.125129

    58. Zhang, S., W. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Panoiu, and R. M. Osgood, "Near-infrared double negative metamaterials," Opt. Express, Vol. 13, 4922-4930, 2005.
    doi:10.1364/OPEX.13.004922

    59. Economou, E. N., Th. Koschny, and C. M. Soukoulis, "Strong diamagnetic response of in split-ringresonator metamaterials: Numerical study and two-loop model," Phys. Rev. B, Vol. 77, 092401, 2008.
    doi:10.1103/PhysRevB.77.092401

    60. Penciu, R. S., K. Aydin, M. Kafesaki, Th. Koschny, E. Ozbay, E. N. Economou, and C. M. Soukoulis, "Multi-gap individual and coupled split-ring resonator structures," Opt. Express, Vol. 16, 18131-18144, 2008.
    doi:10.1364/OE.16.018131

    61. Qin, G., J.-F. Wang, M.-B. Yan, W. Chen, H.-Y. Chen, and Y.-F. Li, "Lowering plasma frequency by enhancing the effective mass of electrons: A route to deep sub-wavelength metamaterials," Chin. Phys. B, Vol. 22, 087302, 2013.
    doi:10.1088/1674-1056/22/8/087302