Vol. 152
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2015-06-02
Can Maxwell's Fish Eye Lens Really Give Perfect Imaging? Part III. a Careful Reconsideration of the ``Evidence for Subwavelength Imaging with Positive Refraction''
By
Progress In Electromagnetics Research, Vol. 152, 1-15, 2015
Abstract
Many scientists do not believe that Maxwell's fish eye mirror (MFEM) can provide perfect imaging even if there is a drain array around the imaging points. However, one microwave experiment found a case where a 0.2λ resolution could be achieved in an MFEM experiment [New J. Phys. 13 (2011) 033016]. In this paper, we show that the MFEM cannot resolve two imaging points at such a subwavelength resolution in most cases even in the presence of a drain array, and an extraordinary case of subwavelength imaging requires a particular phase difference between two coherent sources. Both numerical simulations and experimental results show that the phase difference of two subwavelength-distanced coherent sources greatly influences the field distribution around the drain array. In very few cases (when the phase difference of the two sources is chosen to be a very specific value), we might resolve the image points in the drain array under the assumption that the power absorbed by the scanning cable on the left side of the drain array should be symmetric to that on the right side of the drain array [New J. Phys. 13 (2011) 033016]. However, in most cases, we cannot obtain a super-resolution imaging, as other drains around the image points will greatly influence the imaging. We also note that the experiment assumed that the power absorbed by the scanning cable on the left and the right sides of the drain array is symmetric is not correct for the experiment reported in [New J. Phys. 13 (2011) 033016], as the drain array itself is not symmetric. The highly non-symmetric distribution of the absorbed power is also verified by our simulation and experimental results. The experimental ``result'' of resolving two image peaks could potentially be recovered using only a single image peak, which demonstrates the wrong assumption of mirror symmetry. Comparisons and comments on perfect passive drains, ``super-resolution'' in a spherical geodesic waveguide, and time reverse imaging are also given.
Citation
Sailing He, Fei Sun, Shuwei Guo, Shuomin Zhong, Lu Lan, Wei Jiang, Yungui Ma, and Tiantian Wu, "Can Maxwell's Fish Eye Lens Really Give Perfect Imaging? Part III. a Careful Reconsideration of the ``Evidence for Subwavelength Imaging with Positive Refraction''," Progress In Electromagnetics Research, Vol. 152, 1-15, 2015.
doi:10.2528/PIER15050101
References

1. Ma, Y. G., S. Sahebdivan, C. K. Ong, T. Tyc, and U. Leonhardt, "Evidence for subwavelength imaging with positive refraction," New J. Phys., Vol. 13, No. 3, 033016, 2011.
doi:10.1088/1367-2630/13/3/033016

2. Ma, Y. G., C. K. Ong, S. Sahebdivan, T. Tyc, and U. Leonhardt, "Perfect imaging without negative refraction for microwaves," Physics Optics, arXiv: 1007.2530, 2010.

3. Leonhardt, U., "Perfect imaging without negative refraction," New J. Phys., Vol. 11, No. 9, 093040, 2009.
doi:10.1088/1367-2630/11/9/093040

4. Blaikie, R. J., "Comment on ‘perfect imaging without negative refraction'," New J. Phys., Vol. 12, No. 5, 058001, 2010.
doi:10.1088/1367-2630/12/5/058001

5. Blaikie, R. J., "Perfect imaging without refraction?," New J. Phys., Vol. 13, No. 12, 125006, 2011.
doi:10.1088/1367-2630/13/12/125006

6. Leonhardt, U., "Reply to comment on ‘perfect imaging without negative refraction’," New J. Phys., Vol. 12, No. 5, 058002, 2010.
doi:10.1088/1367-2630/12/5/058002

7. Kinsler, P. and A. Favaro, "Comment on ‘reply to comment on ‘perfect imaging without negative refraction”," New J. Phys., Vol. 13, No. 2, 028001, 2011.
doi:10.1088/1367-2630/13/2/028001

8. Leonhardt, U., "Reply to comment on ‘perfect imaging without negative refraction’," New J. Phys., Vol. 13, No. 2, 028002, 2011.
doi:10.1088/1367-2630/13/2/028002

9. Tyc, T. and A. Danner, "Resolution of Maxwell’s fisheye with an optimal active drain," New J. Phys., Vol. 16, No. 6, 063001, 2014.
doi:10.1088/1367-2630/16/6/063001

10. Sun, F. and S. He, "Can Maxwell’s fish eye lens really give perfect imaging?," Progress In Electromagnetics Research, Vol. 108, 307-322, 2010.
doi:10.2528/PIER10091003

11. Sun, F., X. C. Ge, and S. He, "Can Maxwell’s fish eye lens really give perfect imaging? Part II. The case with passive drains," Progress In Electromagnetics Research, Vol. 110, 313-328, 2010.
doi:10.2528/PIER10110313

12. Leonhardt, U. and T. G. Philbin, "Perfect imaging with positive refraction in three dimensions," Phys. Rev. A, Vol. 81, No. 1, 011804, 2010.
doi:10.1103/PhysRevA.81.011804

13. Merlin, R., "Comment on ‘perfect imaging with positive refraction in three dimensions’," Phys. Rev. A, Vol. 82, No. 5, 057801, 2010.
doi:10.1103/PhysRevA.82.057801

14. Leonhardt, U. and T. G. Philbin, "Reply to ‘comment on ‘perfect imaging with positive refraction in three dimensions”," Phys. Rev. A, Vol. 82, No. 5, 057802, 2010.
doi:10.1103/PhysRevA.82.057802

15. Merlin, R., "Maxwell’s fish-eye lens and the mirage of perfect imaging," J. Opt., Vol. 13, No. 2, 024017, 2011.
doi:10.1088/2040-8978/13/2/024017

16. Zhang, X., "Perfect lenses in focus," Nature, Vol. 480, No. 7375, 42-43, 2011.
doi:10.1038/480042a

17. Quevedo-Teruel, O., R. C. Mitchell-Thomas, and Y. Hao, "Frequency dependence and passive drains in fish-eye lenses," Phys. Rev. A, Vol. 86, No. 5, 053817, 2012.
doi:10.1103/PhysRevA.86.053817

18. Ma, Y., T.Wu, and C. K. Ong, "Subwavelength drains designed for mirror-closed dielectric lenses," J. Opt., Vol. 15, No. 12, 125705, 2013.
doi:10.1088/2040-8978/15/12/125705

19. Gonzalez, J. C., P. Ben´ıtez, and J. C. Minano, "Perfect drain for the Maxwell fish eye lens," New J. Opt., Vol. 15, No. 12, 125705, 2013.
doi:10.1088/2040-8978/15/12/125705

19. Gonzalez, J. C., P. Ben´ıtez, and J. C. Minano, "Perfect drain for the Maxwell fish eye lens," New J. Phys., Vol. 13, No. 2, 023038, 2011.
doi:10.1088/1367-2630/13/2/023038

20. Xu, L. and H. Chen, "Coherent perfect absorber makes a perfect drain for Maxwell’s fish-eye lens," EPL, Vol. 100, No. 3, 34001, 2012.
doi:10.1209/0295-5075/100/34001

21. Minano, J. C., P. Benıtez, and J. C. Gonzalez, "Perfect imaging with geodesic waveguides," New J. Phys., Vol. 12, No. 12, 123023, 2010.
doi:10.1088/1367-2630/12/12/123023

22. Minano, J. C., R. Marqu´es, J. C. Gonz´alez, P. Ben´ıtez, V. Delgado, D. Grabovickic, and M. Freire, "Super-resolution for a point source better than λ/500 using positive refraction," New J. Phys., Vol. 13, No. 12, 125009, 2011.
doi:10.1088/1367-2630/13/12/125009

23. Gonzalez, J. C., D. Grabovickic, P. Benıtez, and J. C. Minano, "Circuital model for the spherical geodesic waveguide perfect drain," New J. Phys., Vol. 14, No. 8, 083033, 2012.
doi:10.1088/1367-2630/14/8/083033

24. Minano, J. C., J. Sanchez-Dehesa, J. C. Gonzalez, P. Benıtez, D. Grabovickic, J. Carbonell, and H. Ahmadpanahi, "Experimental evidence of super-resolution better than λ/105 with positive refraction," New J. Phys., Vol. 16, No. 3, 033015, 2014.
doi:10.1088/1367-2630/16/3/033015

25. Born, M. and E. Wolf, Principles of Optics, 6th edition, Cambridge University Pres, Cambridge, 1998.

26. Leonhardt, U., S. Sahebdivan, A. Kogan, and T. Tyc, "A simple model explaining super-resolution in absolute optical instruments," New J. Phys., Vol. 17, No. 5, 053007, 2015.
doi:10.1088/1367-2630/17/5/053007

27. Heintzmann, R. and C. Cremer, "Laterally modulated excitation microscopy: Improvement of resolution by using a diffraction grating," Proc. SPIE, Vol. 3568, 185-195, 1998.

28. Dunn, R. C., "Near-field scanning optical microscopy," Chemical Rev., Vol. 99, No. 10, 2891-2928, 1999.
doi:10.1021/cr980130e

29. Lerosey, G., J. De Rosny, A. Tourin, and M. Fink, "Focusing beyond the diffraction limit with far-field time reversal," Science, Vol. 315, No. 5815, 1120-1122, 2007.
doi:10.1126/science.1134824

30. Neice, A., "Methods and limitations of subwavelength imaging," Advances in Imaging and Electron Physics, Vol. 163, 117-140, 2010.
doi:10.1016/S1076-5670(10)63003-0