Vol. 151

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Exact Analytical Solution for Fields in a Lossy Cylindrical Structure with Linear Gradient Index Metamaterials

By Mariana Dalarsson, Martin Norgren, and Zoran Jaksic
Progress In Electromagnetics Research, Vol. 151, 109-117, 2015


We investigate the electromagnetic wave propagation across a finite inhomogeneous and anisotropic cylindrical metamaterial composite containing both positive and negative effective refractive index parts with linear spatial gradient. Exact analytical solutions for the electric and magnetic field distributions are obtained for a linear variation of effective refractive index across the structure. The model allows for general temporal dispersion and uniform losses within the composite.


Mariana Dalarsson, Martin Norgren, and Zoran Jaksic, "Exact Analytical Solution for Fields in a Lossy Cylindrical Structure with Linear Gradient Index Metamaterials," Progress In Electromagnetics Research, Vol. 151, 109-117, 2015.


    1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Uspekhi, Vol. 10, 509-514, 1968, Doi: 10.1070/PU1968v010n04ABEH003699.

    2. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low frequency plasmons in thin-wire structures," J. Phys. — Condens. Mat., Vol. 10, 4785-4809, 1998, Doi: 10.1088/0953-8984/10/22/007.

    3. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE T. Microw. Theory, Vol. 47, 2075-2084, 1998, Doi: 10.1088/0953-8984/10/22/007.

    4. Falcone, F., T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marques, F. Martin, and M. Sorolla, "Babinet principle applied to the design of metasurfaces and metamaterials," Phys. Rev. Lett., Vol. 93, No. 19, 197401-1-197401-4, 2004, Doi: 10.1103/PhysRevLett.93.197401.

    5. Dolling, G., C. Enkrich, M. Wegener, J. F. Zhou, C. M. Soukoulis, and S. Linden, "Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials," Opt. Lett., Vol. 30, 3198-3200, 2005, Doi: 10.1364/OL.30.003198.

    6. Zhang, S., W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett., Vol. 95, No. 13, 137404-1-137404-4, 2005, Doi: 10.1103/PhysRevLett.95.137404.

    7. Kafesaki, M., I. Tsiapa, N. Katsarakis, T. Koschny, C. M. Soukoulis, and E. N. Economou, "Left-handed metamaterials: The fishnet structure and its variations," Phys. Rev. B, Vol. 75, 235114-1-235114-9, 2007, Doi: 0.1103/PhysRevB.75.235114.

    8. Valentine, J., S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, "Three-dimensional optical metamaterial with a negative refractive index," Nature, Vol. 455, 376-379, 2008, Doi: 10.1038/nature07247.

    9. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2001, Doi: 10.1126/science.1058847.

    10. Xiao, S., U. K. Chettiar, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, "Yellow-light negative-index metamaterials," Opt. Lett., Vol. 34, 3478-3480, 2009, Doi: 10.1364/OL.34.003478.

    11. Cai, W. and V. M. Shalaev, "Optical Metamaterials: Fundamentals and Applications," Springer, Dordrecht, 2009, doi:10.1007/978-1-4419-1151-3.

    12. Ramakrishna, S. A. and T. M. Grzegorczyk, Physics and Applications of Negative Refractive Index Materials, SPIE Press, Bellingham, WA & CRC Press, Taylor & Francis Group, Boca Raton FL, 2009, Doi: 10.1080/00107510903257459.

    13. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966-3969, 2000. Doi: 10.1103/PhysRevLett.85.3966.

    14. Fang, N., H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science, Vol. 308, 534-537, 2005, Doi: 10.1126/science.1108759.

    15. Engheta, N., "An idea for thin subwavelength cavity resonators using metamaterials with negative permittivity and permeability," IEEE Anten. Wirel. Propag. Lett., Vol. 1, 10-13, 2002, Doi: 10.1109/LAWP.2002.802576.

    16. Pendry, J. B., D. Shurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780-1782, 2006, Doi: 10.1126/science.1126493.

    17. Jacob, Z., L. V. Alekseyev, and E. Nerimanov, "Optical hyperlens: Far-field imaging beyond the diffraction limit," Opt. Express, Vol. 14, 8247-8256, 2006, Doi: 10.1364/OE.14.008247.

    18. Cai, W., U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nat. Photonics, Vol. 1, 224-227, 2007, Doi: 10.1038/nphoton.2007.28.

    19. Fung, T. H., L. L. Leung, J. J. Xiao, and K. W. Yu, "Controlling electric fields spatially by graded metamaterials: Implication on enhanced nonlinear optical responses," Opt. Commun., Vol. 282, 1028-1031, 2009, Doi: 10.1016/j.optcom.2008.11.028.

    20. Ramakrishna, S. A. and J. B. Pendry, "Spherical perfect lens: Solutions of Maxwell’s equations for spherical geometry," Phys. Rev. B, Vol. 69, 115115-1-115115-7, 2004, Doi: 10.1103/PhysRevB.69.115115.

    21. Smith, D. R., J. J. Mock, A. F. Starr, and D. Schurig, "Gradient index metamaterials," Phys. Rev. E, Vol. 71, 036609-1-036609-6, 2005, Doi: 10.1103/PhysRevE.71.036609.

    22. Pinchuk, A. O. and G. C. Schatz, "Metamaterials with gradient negative index of refraction," J. Opt. Soc. Am. A, Vol. 24, A39-A44, 2007, Doi: 10.1364/JOSAA.24.000A39.

    23. Litchinitser, N. M., A. I. Maimistov, I. R. Gabitov, R. Z. Sagdeev, and V. M. Shalaev, "Metamaterials: Electromagnetic enhancement at zero-index transition," Opt. Lett., Vol. 33, 2350-2352, 2008, Doi: 10.1364/OL.33.002350.

    24. Dalarsson, M. and P. Tassin, "Analytical solution for wave propagation through a graded index interface between a right-handed and a left-handed material," Opt. Express, Vol. 17, No. 8, 6747-6752, 2009, Doi: 10.1364/OE.17.006747.

    25. Dalarsson, M., M. Norgren, and Z. Jaksic, "Lossy gradient index metamaterial with sinusoidal periodicity of refractive index: Case of constant impedance throughout the structure," J. Nanophotonics, Vol. 5, No. 1, 051804-1-051804-8, 2011, Doi: 10.1117/1.3590251.

    26. Dalarsson, M., M. Norgren, N. Doncov, and Z. Jaksic, "Lossy gradient index transmission optics with arbitrary periodic permittivity and permeability and constant impedance throughout the structure," J. Opt., Vol. 14, No. 6, 065102-1-065102-7, 2012, Doi: 10.1088/2040-8978/14/6/065102.

    27. Dalarsson, M., M. Norgren, T. Asenov, N. Doncov, and Z. Jaksic, "Exact analytical solution for fields in gradient index metamaterials with different loss factors in negative and positive refractive index segments," J. Nanophotonics, Vol. 7, No. 1, 073086-1-073086-1, 2013, Doi: 10.1117/1.JNP.7.073086.

    28. Dalarsson, M., M. Norgren, T. Asenov, and N. Doncov, "Arbitrary loss factors in the wave propagation between RHM and LHM media with constant impedance throughout the structure," Progress In Electromagnetics Research, Vol. 137, 527-538, 2013.

    29. Mei, , Z. L., J. Bai, and T. J. Cui, "Gradient index metamaterials realized by drilling hole arrays," J. Phys. D, Vol. 43, 055404-1-055404-4, 2010, Doi: 10.1088/0022-3727/43/5/055404.

    30. Kildishev, A. V. and V. M. Shalaev, "Engineering space for light via transformation optics," Opt. Lett., Vol. 33, 43-45, 2008, Doi: 10.1364/OL.33.000043.

    31. Li, J. and J. B. Pendry, "Hiding under the Carpet: A new strategy for cloaking," Phys. Rev. Lett., Vol. 101, No. 20, 203901-1-203901-4, 2008, Doi: 10.1103/PhysRevLett.101.203901.

    32. Valentine, J., J. Li, T. Zentgraf, G. Bartal, and X. Zhang, "An optical cloak made of dielectrics," Nat. Mater., Vol. 8, 568-571, 2009, Doi: 10.1038/nmat2461.

    33. Liu, R., X.M. Yang, J. G. Gollub, J. J.Mock, T. J. Cui, and D. R. Smith, "Gradient index circuit by waveguided metamaterials," Appl. Phys. Lett., Vol. 94, 073506-1-073506-3, 2009, Doi: 10.1063/1.3081399.

    34. Savini, G., P. A. R. Ade, and J. Zhang, "A new artificial material approach for flat THz frequency lenses," Opt. Express, Vol. 20, 25766-25773, 2012, Doi: 10.1364/OE.20.025766.

    35. Jain, S., M. Abdel-Mageed, and R. Mittra, "Flat-lens design using field transformation and its comparison with those based on transformation optics and ray optics," IEEE Anten. Wirel. Propag. Lett., Vol. 12, 777-780, 2013, Doi: 10.1109/LAWP.2013.2270946.