Vol. 151

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2015-05-11

Exact Analytical Solution for Fields in a Lossy Cylindrical Structure with Linear Gradient Index Metamaterials

By Mariana Dalarsson, Martin Norgren, and Zoran Jaksic
Progress In Electromagnetics Research, Vol. 151, 109-117, 2015
doi:10.2528/PIER15042002

Abstract

We investigate the electromagnetic wave propagation across a finite inhomogeneous and anisotropic cylindrical metamaterial composite containing both positive and negative effective refractive index parts with linear spatial gradient. Exact analytical solutions for the electric and magnetic field distributions are obtained for a linear variation of effective refractive index across the structure. The model allows for general temporal dispersion and uniform losses within the composite.

Citation


Mariana Dalarsson, Martin Norgren, and Zoran Jaksic, "Exact Analytical Solution for Fields in a Lossy Cylindrical Structure with Linear Gradient Index Metamaterials," Progress In Electromagnetics Research, Vol. 151, 109-117, 2015.
doi:10.2528/PIER15042002
http://jpier.org/PIER/pier.php?paper=15042002

References


    1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Uspekhi, Vol. 10, 509-514, 1968, Doi: 10.1070/PU1968v010n04ABEH003699.
    doi:10.1070/PU1968v010n04ABEH003699

    2. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low frequency plasmons in thin-wire structures," J. Phys. — Condens. Mat., Vol. 10, 4785-4809, 1998, Doi: 10.1088/0953-8984/10/22/007.
    doi:10.1088/0953-8984/10/22/007

    3. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE T. Microw. Theory, Vol. 47, 2075-2084, 1998, Doi: 10.1088/0953-8984/10/22/007.
    doi:10.1109/22.798002

    4. Falcone, F., T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marques, F. Martin, and M. Sorolla, "Babinet principle applied to the design of metasurfaces and metamaterials," Phys. Rev. Lett., Vol. 93, No. 19, 197401-1-197401-4, 2004, Doi: 10.1103/PhysRevLett.93.197401.
    doi:10.1103/PhysRevLett.93.197401

    5. Dolling, G., C. Enkrich, M. Wegener, J. F. Zhou, C. M. Soukoulis, and S. Linden, "Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials," Opt. Lett., Vol. 30, 3198-3200, 2005, Doi: 10.1364/OL.30.003198.
    doi:10.1364/OL.30.003198

    6. Zhang, S., W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett., Vol. 95, No. 13, 137404-1-137404-4, 2005, Doi: 10.1103/PhysRevLett.95.137404.
    doi:10.1103/PhysRevLett.95.137404

    7. Kafesaki, M., I. Tsiapa, N. Katsarakis, T. Koschny, C. M. Soukoulis, and E. N. Economou, "Left-handed metamaterials: The fishnet structure and its variations," Phys. Rev. B, Vol. 75, 235114-1-235114-9, 2007, Doi: 0.1103/PhysRevB.75.235114.

    8. Valentine, J., S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, "Three-dimensional optical metamaterial with a negative refractive index," Nature, Vol. 455, 376-379, 2008, Doi: 10.1038/nature07247.
    doi:10.1038/nature07247

    9. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2001, Doi: 10.1126/science.1058847.
    doi:10.1126/science.1058847

    10. Xiao, S., U. K. Chettiar, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, "Yellow-light negative-index metamaterials," Opt. Lett., Vol. 34, 3478-3480, 2009, Doi: 10.1364/OL.34.003478.
    doi:10.1364/OL.34.003478

    11. Cai, W. and V. M. Shalaev, "Optical Metamaterials: Fundamentals and Applications," Springer, Dordrecht, 2009, doi:10.1007/978-1-4419-1151-3.

    12. Ramakrishna, S. A. and T. M. Grzegorczyk, Physics and Applications of Negative Refractive Index Materials, SPIE Press, Bellingham, WA & CRC Press, Taylor & Francis Group, Boca Raton FL, 2009, Doi: 10.1080/00107510903257459.

    13. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966-3969, 2000. Doi: 10.1103/PhysRevLett.85.3966.
    doi:10.1103/PhysRevLett.85.3966

    14. Fang, N., H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science, Vol. 308, 534-537, 2005, Doi: 10.1126/science.1108759.
    doi:10.1126/science.1108759

    15. Engheta, N., "An idea for thin subwavelength cavity resonators using metamaterials with negative permittivity and permeability," IEEE Anten. Wirel. Propag. Lett., Vol. 1, 10-13, 2002, Doi: 10.1109/LAWP.2002.802576.
    doi:10.1109/LAWP.2002.802576

    16. Pendry, J. B., D. Shurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780-1782, 2006, Doi: 10.1126/science.1126493.
    doi:10.1126/science.1125907

    17. Jacob, Z., L. V. Alekseyev, and E. Nerimanov, "Optical hyperlens: Far-field imaging beyond the diffraction limit," Opt. Express, Vol. 14, 8247-8256, 2006, Doi: 10.1364/OE.14.008247.
    doi:10.1364/OE.14.008247

    18. Cai, W., U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nat. Photonics, Vol. 1, 224-227, 2007, Doi: 10.1038/nphoton.2007.28.
    doi:10.1038/nphoton.2007.28

    19. Fung, T. H., L. L. Leung, J. J. Xiao, and K. W. Yu, "Controlling electric fields spatially by graded metamaterials: Implication on enhanced nonlinear optical responses," Opt. Commun., Vol. 282, 1028-1031, 2009, Doi: 10.1016/j.optcom.2008.11.028.
    doi:10.1016/j.optcom.2008.11.028

    20. Ramakrishna, S. A. and J. B. Pendry, "Spherical perfect lens: Solutions of Maxwell’s equations for spherical geometry," Phys. Rev. B, Vol. 69, 115115-1-115115-7, 2004, Doi: 10.1103/PhysRevB.69.115115.

    21. Smith, D. R., J. J. Mock, A. F. Starr, and D. Schurig, "Gradient index metamaterials," Phys. Rev. E, Vol. 71, 036609-1-036609-6, 2005, Doi: 10.1103/PhysRevE.71.036609.

    22. Pinchuk, A. O. and G. C. Schatz, "Metamaterials with gradient negative index of refraction," J. Opt. Soc. Am. A, Vol. 24, A39-A44, 2007, Doi: 10.1364/JOSAA.24.000A39.
    doi:10.1364/JOSAA.24.000A39

    23. Litchinitser, N. M., A. I. Maimistov, I. R. Gabitov, R. Z. Sagdeev, and V. M. Shalaev, "Metamaterials: Electromagnetic enhancement at zero-index transition," Opt. Lett., Vol. 33, 2350-2352, 2008, Doi: 10.1364/OL.33.002350.
    doi:10.1364/OL.33.002350

    24. Dalarsson, M. and P. Tassin, "Analytical solution for wave propagation through a graded index interface between a right-handed and a left-handed material," Opt. Express, Vol. 17, No. 8, 6747-6752, 2009, Doi: 10.1364/OE.17.006747.
    doi:10.1364/OE.17.006747

    25. Dalarsson, M., M. Norgren, and Z. Jaksic, "Lossy gradient index metamaterial with sinusoidal periodicity of refractive index: Case of constant impedance throughout the structure," J. Nanophotonics, Vol. 5, No. 1, 051804-1-051804-8, 2011, Doi: 10.1117/1.3590251.
    doi:10.1117/1.3590251

    26. Dalarsson, M., M. Norgren, N. Doncov, and Z. Jaksic, "Lossy gradient index transmission optics with arbitrary periodic permittivity and permeability and constant impedance throughout the structure," J. Opt., Vol. 14, No. 6, 065102-1-065102-7, 2012, Doi: 10.1088/2040-8978/14/6/065102.
    doi:10.1088/2040-8978/14/6/065102

    27. Dalarsson, M., M. Norgren, T. Asenov, N. Doncov, and Z. Jaksic, "Exact analytical solution for fields in gradient index metamaterials with different loss factors in negative and positive refractive index segments," J. Nanophotonics, Vol. 7, No. 1, 073086-1-073086-1, 2013, Doi: 10.1117/1.JNP.7.073086.
    doi:10.1117/1.JNP.7.073086

    28. Dalarsson, M., M. Norgren, T. Asenov, and N. Doncov, "Arbitrary loss factors in the wave propagation between RHM and LHM media with constant impedance throughout the structure," Progress In Electromagnetics Research, Vol. 137, 527-538, 2013.
    doi:10.2528/PIER13013004

    29. Mei, , Z. L., J. Bai, and T. J. Cui, "Gradient index metamaterials realized by drilling hole arrays," J. Phys. D, Vol. 43, 055404-1-055404-4, 2010, Doi: 10.1088/0022-3727/43/5/055404.

    30. Kildishev, A. V. and V. M. Shalaev, "Engineering space for light via transformation optics," Opt. Lett., Vol. 33, 43-45, 2008, Doi: 10.1364/OL.33.000043.
    doi:10.1364/OL.33.000043

    31. Li, J. and J. B. Pendry, "Hiding under the Carpet: A new strategy for cloaking," Phys. Rev. Lett., Vol. 101, No. 20, 203901-1-203901-4, 2008, Doi: 10.1103/PhysRevLett.101.203901.
    doi:10.1103/PhysRevLett.101.203901

    32. Valentine, J., J. Li, T. Zentgraf, G. Bartal, and X. Zhang, "An optical cloak made of dielectrics," Nat. Mater., Vol. 8, 568-571, 2009, Doi: 10.1038/nmat2461.
    doi:10.1038/nmat2461

    33. Liu, R., X.M. Yang, J. G. Gollub, J. J.Mock, T. J. Cui, and D. R. Smith, "Gradient index circuit by waveguided metamaterials," Appl. Phys. Lett., Vol. 94, 073506-1-073506-3, 2009, Doi: 10.1063/1.3081399.

    34. Savini, G., P. A. R. Ade, and J. Zhang, "A new artificial material approach for flat THz frequency lenses," Opt. Express, Vol. 20, 25766-25773, 2012, Doi: 10.1364/OE.20.025766.
    doi:10.1364/OE.20.025766

    35. Jain, S., M. Abdel-Mageed, and R. Mittra, "Flat-lens design using field transformation and its comparison with those based on transformation optics and ray optics," IEEE Anten. Wirel. Propag. Lett., Vol. 12, 777-780, 2013, Doi: 10.1109/LAWP.2013.2270946.
    doi:10.1109/LAWP.2013.2270946