Vol. 149
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2014-09-06
Influence of Active Nano Particle Size and Material Composition on Multiple Quantum Emitter Enhancements: Their Enhancement and Jamming Effects (Invited Paper)
By
Progress In Electromagnetics Research, Vol. 149, 85-99, 2014
Abstract
In the 150 years that scientists and engineers have used Maxwell's equations to describe electromagnetic phenomena, canonical scattering and radiating problems have played a very important role, providing explanations of and insights into their underlying physics. With the same intent, a variety of active coated nano-particles are examined here theoretically with regard to their ability to effectively enhance or jam(cloak) the responses of quantum emitters, e.g., fluorescing molecules, and nano-antennas to an observer located in their far-field regions. The investigated spherical particles consist of a gain-impregnated silica nano-core covered with a nano-shell of a specific plasmonic material. Attention is devoted to the influence of the over-all size of these particles and their material composition on the obtained levels of active enhancement or jamming. Silver, gold and copper are employed as their nano-shells. The over-all diameters of the investigated coated nano-particles are taken to be 20 nm, 40 nm, and 60 nm, while maintaining the same ratio of the core radius and shell thickness. It is shown that the jamming levels, particularly when several emitters are present, are significantly larger for particles of larger sizes. These configurations are also shown to lead to the largest enhancement levels of the surrounding quantum emitters. Furthermore, for a fixed particle size and for a gain constant that produces the largest enhancement peak at optical wavelengths, it is demonstrated that these larger levels are most notable when the nano-shell is gold.
Citation
Samel Arslanagic, and Richard Ziolkowski, "Influence of Active Nano Particle Size and Material Composition on Multiple Quantum Emitter Enhancements: Their Enhancement and Jamming Effects (Invited Paper)," Progress In Electromagnetics Research, Vol. 149, 85-99, 2014.
doi:10.2528/PIER14070210
References

1. Cai, W. and V. Shalaev, Optical Metamaterials, Springer, Berlin, Germany, 2010.

2. Gordon, J. A. and R. W. Ziolkowski, "CNP optical metamaterials," Opt. Express, Vol. 16, 6692-6716, Apr. 2008.

3. Bharadwaj, P., B. Deutsch, and L. Novotny, "Optical antennas," Adv. Opt. Photon., Vol. 1, No. 3, 438-483, 2009.

4. Agio, M. and A. Alu, Optical Antennas, Cambridge University Press, New York, 2013.

5. Klar, T. A., A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, "Negative-index metamaterials: Going optical," IEEE J. Sel. Topics Quantum Electron., Vol. 12, No. 6, 1106-1115, Nov./Dec. 2006.

6. Gordon, J. A. and R. W. Ziolkowski, "The design and simulated performance of a coated nano-particle laser," Opt. Express, Vol. 15, No. 5, 2622-2653, Mar. 2007.

7. Gordon, J. A. and R. W. Ziolkowski, "Investigating functionalized active coated nano-particles for use in nano-sensing applications," Opt. Express, Vol. 15, No. 20, 12562-12582, Oct. 2007.

8. Xiao, S., V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, "Loss-free and active optical negative-index metamaterials," Nature, Vol. 466, No. 7307, 735-738, Aug. 2010.

9. De Luca, A., M. P. Grzelczak, I. Pastoriza-Santos, L. M. Liz-Marz´an, M. La Deda, M. Striccoli, and G. Strangi, "Dispersed and encapsulated gain medium in plasmonic nanoparticles: A multipronged approach to mitigate optical losses," ACS Nano, Vol. 5, No. 7, 5823-5829, 2011.

10. Klopfer, M. and R. K. Jain, "Plasmonic quantum dots for nonlinear optical applications," Opt. Mat. Express, Vol. 1, No. 7, 1353-1366, Oct. 2011.

11. Campione, S., M. Albani, and F. Capolino, "Complex modes and near-zero permittivity in 3D arrays of plasmonic nanoshells: Loss compensation using gain," Opt. Mat. Express, Vol. 1, No. 6, 1077-1089, Oct. 2011.

12. Pan, J., Z. Chen, J. Chen, P. Zhan, C. J. Tang, Z. L. Wang, and , "Low-threshold plasmonic lasing based on high-Q dipole void mode in a metallic nanoshell," Opt. Lett., Vol. 37, No. 7, 1181-1183, Apr. 2012.

13. Li, Z.-Y., "Metal nanoparticles with gain toward single-molecule detection by surface-enhanced raman scattering," Nano Lett., Vol. 10, 243-249, 2010, doi: 10.1021/nl903409x.

14. Liu, S.-Y., J. Li, F. Zhou, L. Gan, and Z.-Y. Li, "Efficient surface plasmon amplification from gain-assisted gold nanorods," Opt. Lett., Vol. 36, No. 7, 9592-10146, Apr. 2011.

15. Alu, A. and N. Engheta, "Achieving transparency with plasmonic and metamaterial coatings," Phys. Rev. E, Vol. 72, 017723, Jul. 2005.

16. Strangi, G., A. De Luca, S. Ravaine, M. Ferrie, and R. Bartolino, "Gain induced optical transparency in metamaterials," Appl. Phys. Lett., Vol. 98, No. 25, 251912, Jun. 2011.

17. Chew, H. W., P. J. McNulty, and M. Kerker, "Model for a Raman and fluorescent scattering by molecules embedded in small particles," Phys. Rev. A, Vol. 13, 396-404, 1976.

18. Gordon, J. A. and R. W. Ziolkowski, "Investigating functionalized active coated nano-particles for use in nano-sensing applications," Opt. Express, Vol. 15, 12562-12582, Oct. 2007.

19. Alexopoulos, N. G. and N. K. Uzungolu, "Electromagnetic scattering from active objects: Invisible scatterers," Appl. Opt., Vol. 17, 235-232, 1978.

20. Alu, A. and N. Engheta, "Plasmonic and metamaterial cloaking: Physical mechanisms and potentials," J. Opt. A: Pure Appl. Opt., Vol. 10, 2008, doi: 10.1088/1464-4258/10/9/093002.

21. Xu, Q., F. Liu, W. Meng, and Y. Huang, "Plasmonic core-shell metal-organic nanoparticles enhanced dye-sensitized solar cells," Opt. Express, Vol. 20, No. 106, A898-A907, Nov. 2012.

22. Alu, A. and N. Engheta, "Enhanced directivity from subwavelength infrared/optical nano-antennas loaded with plasmonic materials or metamaterials," IEEE Trans. Antennas Propagat., Vol. 55, 3027-3039, Nov. 2007.

23. Hirsch, L. R., A. M. Gobin, A. R. Lowery, F. Tam, R. A. Drezek, N. J. Halas, and J. L. West, "Metal nanoshells," Ann. Biomed. Eng., Vol. 34, No. 1, 15-22, Jan. 2006.

24. Halas, N. J., "Plasmonics: An emerging field fostered by nano letters," Nano. Lett., Vol. 10, 3816-3822, Sep. 2010.

25. Choi, I. and Y. Choi, "Plasmonic nanosensors: Review and prospect," IEEE J. Selected Top. Quantum Electron., Vol. 18, No. 3, 1110-1121, May/Jun. 2012.

26. Arslanagic, S., R. W. Ziolkowski, and O. Breinbjerg, "Radiation properties of an electric Hertzian dipole located near-by concentric metamaterial spheres," Radio Sci., Vol. 42, RS6S16, Nov. 2007, doi:10.1029/2007RS003663.

27. Arslanagic, S. and R. W. Ziolkowski, "Active coated nano-particle excited by an arbitrarily located electric Hertzian dipole — Resonance and transparency effects," J. Opt. A, Vol. 12, 024014, Feb. 2010.

28. Arslanagic, S. and R. W. Ziolkowski, "Active coated nano-particles: Impact of plasmonic material choice," Appl. Phys. A, Vol. 103, 795-798, Jun. 2011.

29. Arslanagic, S. and R. W. Ziolkowski, "Jamming of quantum emitters by active coated nano-particles," IEEE J. Selected Top. Quantum Electron., Vol. 19, No. 3, 4800506, May/Jun. 2013.

30. Chance, R. R., A. Prock, and R. Silbey, "Molecular fluorescence and energy transfer near interfaces," Adv. Chem. Phys., Vol. 37, 1-65, 1978.

31. Ziolkowski, R. W. and A. D. Kipple, "Reciprocity between the effects of resonant scattering and enhanced radiated power by electrically small antennas in the presence of nested metamaterial shells," Phys. Rev. E, Vol. 72, 036602, Sep. 2005.

32. Ziolkowski, R. W. and A. Erentok, "Metamaterial-based efficient electrically small antennas," IEEE Trans. Antennas Propagat., Vol. 54, 2113-2130, Jul. 2006.

33. Erentok, A. and R. W. Ziolkowski, "A hybrid optimization method to analyze metamaterial-based electrically small antennas," IEEE Trans. Antennas Propag., Vol. 55, No. 3, 731-741, Mar. 2007.

34. Ziolkowski, R. W. and A. Erentok, "At and beyond the Chu limit: Passive and active broad bandwidth metamaterial-based efficient electrically small antennas," IET Microwaves, Antennas & Propagation, Vol. 1, No. 1, 116-128, Feb. 2007.

35. Purcell, E. M., "Spontaneous emission probabilities at radio frequencies," Phys. Rev., Vol. 69, 681, Jun. 1946.

36. Novotny, L. and B. Hecht, Principles of Nano-optics, Cambridge University Press, New York, 2012.

37. Noginov, M. A., G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, "Demonstration of a spaser-based nanolaser," Nature Photon., Vol. 460, 1110-1112, Aug. 2009.

38. Noginov, M. A., G. Zhu, V. P. Drachev, and V. M. Shalaev, "Surface plasmons and gain media," Nanophotonics with Surface Plasmons, Chap. 5, 141-169, Elsevier, 2007.

39. Sivan, Y., S. Xiao, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Frequency-domain simulations of anegative-index material with embedded gain," Opt. Express., Vol. 17, 24060-24074, Dec. 2009.

40. Fang, A., T. Koschny, and C. M. Soukoulis, "Lasing in metamaterial nanostructures," J. Opt., Vol. 12, 024013, Jan. 2010.

41. Campbell, S. D. and R. W. Ziolkowski, "Impact of strong localization of the incident power density on the nano-ampliflier characteristics of active coated nano-particles," Opt. Commun., Vol. 285, No. 16, 3341-3352, 2012.

42. Li, D. B. and C. Z. Ning, "Giant modal gain, ampliflied surface plasmon-polariton propagation, and slowing down of energy velocity in a metal-semiconductor-metal structure," Phys. Rev. B, Vol. 80, 153304, Oct. 2009.

43. Hill, M. T., "Status and prospects for metallic and plasmonic nano-lasers [invited]," J. Opt. Soc. Am. B, Vol. 27, B36-B44, Nov. 2010.

44. Campbell, S. D. and R. W. Ziolkowski, "The performance of active coated nanoparticles based on quantum dot gain media," Adv. Optoelectron., Vol. 2012, Article ID 368786, 2012.

45. Arslanagic, S. and R. W. Ziolkowski, "Nano-sensing of the orientation of fluorescing molecules with active coated nano-particles," Photonics and Nanostructures — Fundamentals and Applications, Feb. 2014.