Vol. 146

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2014-05-09

A 3-Dimensional Stacked Metamaterial Arrays for Electromagnetic Energy Harvesting

By Thamer Almoneef and Omar M. Ramahi
Progress In Electromagnetics Research, Vol. 146, 109-115, 2014
doi:10.2528/PIER14031603

Abstract

We present the design of 3-D metamaterial stacked arrays for efficient conversion of electromagnetic waves energy into AC. The design consists of several vertically stacked arrays where each array is comprised of multiple Split-Ring Resonators. The achieved conversion efficiency is validated by calculating the power dissipated in a resistive load connected across the gap of each resonator. Numerical simulations show that using stacked arrays can significantly improve the efficiency of the harvesting system in comparison to a flat 2-D array. In fact, the per-unit-area efficiency of the 3-D design can reach up to 4.8 times the case of the 2-D array. Without loss of generalization, the designs presented in this work considered an operating frequency of 5.8 GHz.

Citation


Thamer Almoneef and Omar M. Ramahi, "A 3-Dimensional Stacked Metamaterial Arrays for Electromagnetic Energy Harvesting," Progress In Electromagnetics Research, Vol. 146, 109-115, 2014.
doi:10.2528/PIER14031603
http://jpier.org/PIER/pier.php?paper=14031603

References


    1. Pendry, J., "Negative refraction makes a perfect lens," Physical Review Letters, Vol. 85, No. 18, 3966-3969, 2000.
    doi:10.1103/PhysRevLett.85.3966

    2. Enoch, S., et al., "A metamaterial for directive emission," Physical Review Letters, Vol. 89, No. 21, 213902, 2002.
    doi:10.1103/PhysRevLett.89.213902

    3. Schurig, D., J. Mock, B. Justice, S. Cummer, J. Pendry, A. Starr, and D. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, No. 5801, 977-980, 2006.
    doi:10.1126/science.1133628

    4. Landy, N., S. Sajuyigbe, J. Mock, D. Smith, and W. Padilla, "Perfect metamaterial absorber," Physical Review Letters, Vol. 100, No. 20, 207402, 2008.
    doi:10.1103/PhysRevLett.100.207402

    5. Tao, H., C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, "Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization," Physical Review B Condensed Matter and Materials Physics, Vol. 78, No. 24, 241103R, 2008.
    doi:10.1103/PhysRevB.78.241103

    6. Ramahi, O., T. Almoneef, M. Alshareef, and M. Boybay, "Metamaterial particles for electromagnetic energy harvesting," Applied Physics Letters, Vol. 101, No. 17, 173903, 2012.
    doi:10.1063/1.4764054

    7. Bait-Suwailam, M. M., O. F. Siddiqui, and O. M. Ramahi, "Mutual coupling reduction between microstrip patch antennas using slotted-complementary split-ring resonators," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 876-878, 2010.
    doi:10.1109/LAWP.2010.2074175

    8. Ramahi, O. M. and T. S. Almoneef, "A three-dimensional stacked metamaterial arrays for electromagnetic energy harvesting,", US Provisional Patent Application No. 61939191.

    9. Suh, Y. and K. Chang, "A high-e±ciency dual-frequency rectenna for 2.45- and 5.8-GHz wireless power transmission," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 7, 1784-1789, 2002.
    doi:10.1109/TMTT.2002.800430

    10. Ren, Y.-J. and K. Chang, "5.8-GHz circularly polarized dual-diode rectenna and rectenna array for microwave power transmission," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 4, 1784-1789, 2006.

    11. Hawkes, A. M., A. R. Katko, and S. A. Cummer, "A microwave metamaterial with integrated power harvesting functionality," Applied Physics Letters, Vol. 103, No. 16, 163901, 2013.
    doi:10.1063/1.4824473

    12. AlShareef, M. and O. M. Ramahi, "Electrically small resonators for energy harvesting in the infrared regime," Journal of Applied Physics, Vol. 144, 223101-223105, 2013.
    doi:10.1063/1.4846076

    13. Bernardi, M., N. Ferralis, J. H. Wan, R. Villalon, and J. C. Grossman, "Solar energy generation in three dimensions," Energy & Environmental Science, Vol. 5, No. 5, 6880-6884, 2012.
    doi:10.1039/c2ee21170j

    14. ANSYS HFSS Version 15.0.0, Ansys Inc., , http://www.ansys.com.

    15. Cheng, Y. Z., Y. Wang, Y. Nie, R. Z. Gong, X. Xiong, and X. Wang, "Design, fabrication and measurement of a broadband polarization-insensitive metamaterial absorber based on lumped elements," Journal of Applied Physics, Vol. 111, No. 4, 044902, 2012.
    doi:10.1063/1.3684553

    16. Aydin, K., I. Bulu, K. Guven, M. Kafesaki, C. Soukoulis, and E. Ozbay, "Investigation of magnetic resonances for di®erent split-ring resonator parameters and designs," New Journal of Physics, Vol. 7, 168, 2005.
    doi:10.1088/1367-2630/7/1/168

    17. Erb, R., "Power from space --- The tough questions: The 1995 Peter E. Glaser lecture," Acta Astronautica, Vol. 38, No. 4, 539-550, 1996.
    doi:10.1016/0094-5765(96)82324-1

    18. Nansen, R. H., "Wireless power transmission: The key to solar power satellites," IEEE Aerospace and Electronic Systems Magazine, Vol. 11, No. 1, 33-39, 1996.
    doi:10.1109/62.484148